Introduction to Simulation
Techniques on the Sinclair QL

Practical methods

John Cochrane

Introduction to Simulation
Techniques on the Sinclair Q

< \
<SRN
<SR N\
AR RET
.‘. ""‘-1"‘//" >
e S e Ue SIS (4
Y * ./‘Q //.‘
.. .. e A
X C 2228)
D

Practical methods

John Cochrane

First published 1984 by:

Sunshine Books (an imprint of Scot Press Ltd.)
12—13 Little Newport Street

London WC2R 3LD

Copyright © John Cochrane, 1984

@ Sinclair QL, QL Microdrive and Super BASIC are Trade Marks of
Sinclair Research Ltd.
© The contents of the QL are the copyright of Sinclair Research Ltd.

@ Quill, Archive, Abacus and Easel are Trade Marks of Psion Software
Ltd.

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means, elec-
tronic, mechanical, photocopying, recording and/or otherwise, without
the prior written permission of the Publishers.

British Library Cataloguing in Publication Data
Cochrane, John
Introduction to simulation techniques on the Sinclair QL.
1. Computer simulation
2. Sinclair QL (Computer) — Programming
I. Title
001.4'24 QA76.9.C65

ISBN 0-946408—-45-9

Cover design by Grad Graphic Design Ltd.
Illustration by Richard Dunn.

Typeset and printed in England by Commercial Colour Press, London E7.

ii

CONTENTS

Foreword

1

10

Made to Measure
Introduction

WhenlwasaBoy. ..

A background to simulations

But What Does This Little Black Button Do?

How simulations are used

Getting It Together
Practical techniques

QLued Up and Ready To Go
What the QL can do

Laughing Allthe Way tothe Bank

Money models

Testing Testing Testing
Product development

What We Want is Information
What do you want to know?

And Out of the Unknown. . .

Simulating the unknown

Campaign For Real-time
Real-time simulation

Glossary

Page
vii

19
25
39
47
57
71
87
103

115

iii

Contents in detail

CHAPTER 1
Made to Measure

Introduction — who the book is for — what the book is about — who can
use simulations — who develops simulations — which techniques can be
used on micros — what is the scope of this book — organisation of the
book.

CHAPTER 2
When I was a Boy....

A background to simulations — what are simulations — systems thinking
— the user — early hardware and simulations — operational analysis —
industrial simulations.

CHAPTER 3
But What Does This Little Black Button Do?

How simulations are used — the basic types of simulation — emulation
simulations — analytical simulations — predictors — use and abuse of
simulations.

CHAPTER 4
Getting It Together

Practical techniques — The importance of defining the requirement —
diagrams — feedback — simulation structure — choosing the basic tech-
niques — Monte Carlo — deterministic — Markov chain — technique to
suit the simulation — development of the simulation — verifying the
model.

CHAPTER §
QLued Up and Ready To Go

What the QL can do — basic description — 68008 — other hardware —
software — simulations on microcomputers — QL benefits.

Introduction to Simulation Techniques on the Sinclair QL

CHAPTER 6
Laughing All the Way to the Bank

Money models — background — example — simulation development —
results.

CHAPTER 7

Testing Testing Testing

Product development — background — example — simulation
development — results — program description — program listing.
CHAPTER 8

What We Want is Information

What do you want to know? — background — example — simulation
development — results — program description and use — program
improvements — program listing.

CHAPTER 9
And Out of the Unknown....

Simulating the unknown — background — example — simulation
development — results — program description — program improvements
— program listing.

CHAPTER 10
Campaign For Real-time

Real-time simulation — background — example — simulation
development and results — program description — program use and
further development — program listing.

vi

Foreword

100
110
120
130
(4)
140
150
160
170
180
190
=1

200
2:F
210
=1

220
2:F
230
240
250
260
270
280
290
300
310
320
330
340
350

360
370
380
390
400
410

REMark FORWARD

DIM P(11) :MODE 256:CSIZE 2,0

INK 6:PAPER 0:CLS

P(0)=83:P(1)=73:P(2)=77:P(3)=85:P

_ S M ¥

=76 " .
=69:P!8)=45

})=33-

e
PROA
SELect B=0 TO 5:D=1:C=RND(4)-2:F

SELect B=15 TO 20:D=-1:C=RND(4) -
=1
SELect A=0 TO 5:C=1:D=RND(4)-2:F

SELect A=31 TO 37:C=-1:D=RND(4) -
=1
SELect B=9:PROB
SELect E=0:PROD Q,R,!I,G,F
PROD A,B,H,G,F
END REPeat LOOP
DEFine PROCedure PROA
F=0:Q=A:A=A+C
R=B:B=B+D
H=111:G=6:1=32
END DEFine
DEFine PROCedure PROB
SELect A=0 TO 11,24 TO 37:RETurn
J=(A-12):H=P(J):F=1:1=32:G=3
END DEFine

DEFine PROCedure PROD (K,L,M,N,O)
CURSOR 12*K,10*L

E=0:SELect M=33 TO 100:E=1

INK N:PRINT CHR$(M)

IF O=1 THEN BEEP 2,K,L.,2,2
END DEFine

vii

CHAPTER 1
Made to Measure

Introduction

uilred 1 meet /M%m/a/m/

Introduction to Simulation Techniques on the Sinclair QL

Who the book is for

This book is intended to give the inexperienced computer user a theoretical
and practical introduction to the development and use of computer simu-
lations. In particular, simulation techniques appropriate for use on the
unexpanded and expanded (with 0.5 megabyte memory expansion)
Sinclair QL. microcomputer. The reader is expected to have a basic under-
standing of the principles of computing and, preferably, to have read the
Sinclair QL manuals. Practical examples are given, using Sinclair Super-
BASIC and the QL Application Software.

What the book is about
So, what are computer simulations? What are they used for? What are
the benefits?

None of these questions have simple answers, although Chapters 3 and 4
go some way towards answering them. For now, we can think of computer
simulations as special-purpose programs designed to duplicate the
workings of the real world and to provide us with output in a very particu-
lar form. Every simulation must be developed to fulfil the specific
requirements of the user (the user is quite simply the person, or group, who
wishes to use the results produced by a computer simulation) and a great
variety of types of simulation have been developed. Well-known simu-
lations based on computers include the control routines for full-scale flight
simulators used in the training and testing of airline pilots, weather fore-
casting programs (a particularly difficult simulation task — see Chapter
4), video games of many types, the programs used by television producers
to predict election results on live broadcasts, and the (sometimes) hugely
complex programs used by engineers to help in the design of such diverse
stuctures as North Sea oil-rigs, aircraft, and modern motor vehicles. In
addition, much of the research into artificial intelligence and expert
systems centres on the simulation of the workings of the human brain.

Who can use simulations

Until very recently, the number of viable simulations which could be used
by ‘the man in the street’ have been very few, and very expensive.
Typically, a finite-element model (used for analysing the strength of large
and small mechanical structures, such as bridges, machine parts, and
buildings) would only be available to the largest engineering companies or,
at high cost, to other companies through computer bureaux. The running
of such a model would cost the user many hundreds of pounds for every
run, and the total cost of designing a product using computer simulation
techniques would run to many tens or hundreds of thousands of pounds.
Obviously these models have been beyond the reach of most companies
and individuals. The big changes which have occurred recently are the

2

Chapter 1 Made to Measure

dramatic fall in cost, and rise in capability, of the microcomputer and the
development of a number of simulation techniques suitable for the smaller
user.

Recently, many new applications for simulations on microcomputers
have been recognised, particularly in the video games area. Simulation-
based programs for the home computer market, other than games, include
pools predictors, voice synthesizers, and some of the newer expert systems.
These applications are of restricted use however; both memory and pro-
cessing speed limitations are against the commercial exploitation of most
practical simulations in the home. Video games, of course, provide a huge
market for the skilled simulation writer. With a brief stretch of the imagin-
ation, a basic technique can be used to create hurtling asteroids, mutant
sparrows, or undersea fishes. Flight simulators, motor racing games, and
tank-battle simulators take a little more effort, but can successfully be
implemented on even the cheapest of home micros.

Business simulations on the other hand are an entirely different kettle of
fish. Simulations can be of immense value to a thriving business, but each
simulation is likely to be unique. This limits the value of general-purpose
programs, and most simulations are developed by professional consultants
or by the most enthusiastic employees. Obviously, in this situation, the
development of useful programs lags behind the potential demand for
those programs. This book seeks to extend the knowledge of ‘ordinary’
programmers to include the basic techniques required to develop func-
tional simulations.

Who develops simulations

The principal current users of large non-game simulations are
development engineers, university research workers, and financial go-
getters. The simulations used tend to be experimental; they are used to test
out different ideas and determine alternative possible futures. Engineers
use detailed simulations, usually home-grown, of prospective construc-
tions, to investigate the potential problems/cost-savings of alternative
designs. Universities either work on a contract basis for local industries or
use incredibly advanced (at least they think so) techniques for the pure
pleasure of the development. (In fact, these techniques can lead to genuine
advances in ‘simulator technology’ — more of this later.) Financial
modellers are usually interested in developing either sophisticated and
large data-base programs for the rapid analysis of trends or specialised
simulations of specific commercial organisations.

Which techniques can be used on micros
Unfortunately, some of the most striking simulations demand very high
access speeds to huge reserves of memory. It is still the case that microcom-

Introduction to Simulation Techniques on the Sinclair QL

puters have severe limitations in the area of memory access. Real-time
simulations demand high processing speeds, another weak area for micro-
computers. Despite the restricted capabilities of most microcomputers
when compared to mainframes, many simulation techniques are usable on
microcomputers. However, it is not possible to pack a quart into a pint pot.

Real-time simulations when run on microcomputers remain rather
simple. Large data-base programs often require expensive hardware
add-ons, such as hard-disk memories, and can be exasperatingly slow to
run. Similarly, applications such as some of the latest artificial intelligence
techniques are usually of limited practical value unless kept very basic and
then tailored to meet a particular need.

The display capabilities of microcomputers are a particular trouble area.
Display resolution is kept low in order to preserve memory and to reduce
the processing demands on the microprocessor. The following program
indicates one of the display problems. A second hand on a clock face is
represented and drawn using the turtle graphics commands. Because the
screen display is limited, there is a rounding effect on the representation of
the second hand which produces slightly different images depending on the
direction of movement of the turtle. INK is used first to draw the second
hand and then to remove it whilst the turtle moves out and back. PAUSE at
line 220 would need increasing if you wanted to show an accurate sweep-
speed for the second hand. (See Chapter 3 for an improved version of this
program.)

100 MODE 256

110 CSIZE 2,0

120 INK 7

130 PAPER 1

140 CLS

150 CIRCLE 80,50, 31
160 POINT 80,50

170 TURNTO 0

180 PENDOWN

190 REPeat clock_hand
200 INK 7

210 MOVE 30

220 PAUSE 10

230 TURN 180

240 INK 1

250 MOVE 30

260 TURN 180-360/60
270 END REPeat clock_hand

Many useful techniques can be implemented on microcomputers however,
as described in this book. Allowance must be made for the limitations of
the machine being used, of course: the Sinclair QL, with its 32-bit pro-
cessor and large on-board memory is particularly well suited to the running

4

Chapter]| Made to Measure

of simulations. Real-time simulations — even when written in BASIC, a
notoriously slow-running language — can be developed if the screen dis-
play is kept very simple (of course, Sinclair SuperBASIC is considerably in
advance of most other forms of BASIC, in terms of speed and versatility).
Financial and developmental programs of quite a high standard can be
implemented.

What is the scope of this book

As a basic introduction, this book gives a guide to the most useful tech-
niques available and the way in which the techniques can be incorporated
into practical simulations. Techniques are explained by way of a series of
examples, covering a wide range of possible application areas. These
examples are kept as simple as possible in order better to demonstrate the
techniques used.

It is not possible in this book to describe fully all potential applications,
and it is left to you, the reader, to assess your own particular requirement
for such techniques. Further books in this series will give full listings of a
number of developed simulations for business and personal use.

I draw on my own experience throughout the book and the examples
presented in Chapters 6 to 10 are taken from my own case-book.

Organisation of the book

The general theories of simulation development and use are presented in
Chapters 2, 3 and 4. Chapter 5 indicates the points of practical interest
when programming the Sinclair QL to run simulations, and examines the
potential of the machine. The remaining chapters examine the particular
techniques available for the major applications areas and give example
programs. A glossary provides a reference list of words and phrases which
may be unfamiliar to you.

CHAPTER 2
When I was a Boy. ..

A background to simulations

Introduction to Simulation Techniques on the Sinclair QL

In this chapter I shall begin to introduce you to the concept of computer
simulation. That is, what simulations are, where they came from, and why
they are used.

Firstly, however, a short word of warning. Inevitably, there is a fair
amount of jargon associated with this particular brand of computer
science (you see, it’s started already!). I’m not especially fond of jargon for
jargon’s sake, but some is bound to creep in from time to time — for which
you must forgive me. More importantly, I shall be introducing you to a
number of new concepts and must include some technical description.
Don’t worry about either of these, the concepts are based on the applica-
tion of logic and the technical descriptions only need be remembered if you
want to delve deeper into the formal side of simulations.

What are simulations
Although I have just called simulations a branch of computer science, it
would be more truthful to say that what I am talking about is the ‘art’ of
computer simulation. I say this because despite attempts being made
(successfully!) from the earliest days of computers to run simulations,
there is still no widely-accepted formal approach to their creation, little
information is shared between users, and no yardstick exists to measure
performance. Hence, in strict terms , there is no such thing as ‘simulation
technology’. Every new simulation is started afresh, and the final success
of the program will depend on the inspiration and experience of the simu-
lation designer. In this book I attemipt to describe the vital first few steps
required for the development of practical and useful simulations.
Already in this chapter I have innocently touched on two subjects which
are fundamental to my concept of computer simulation. Firstly, the
computer simulations covered by this book are programs. This may seem a
little obvious to most of us but it is important to think this way right from
the start — I shall explain further presently. The second message is that
simulations are run on computers, and that computers are tools.
Computers mean different things to different people. Some people want
instant access to stored information; the computer is a memory device.
Some people want entertainment; the computer is a video-game machine.
Some people want to produce documents; the computer is a word pro-
cessor. Some people want to manipulate data; the computer is a program-
mable calculator. And so on and so on. Given sufficient time and
imagination you could fill a library of books with descriptions of what
computers can do for different people. The point, with all these varied
uses, is that the computer is a tool. Versatile and expensive perhaps, but a
tool nonetheless. Computers can be made to do what you want and in the
way you want (there are limitations of course). What is needed at first is a
clear idea of just what it is that you require. You can’t get anything out of a

8

Chapter2 WhenlIwasaBoy. . .

computer unless you (or somebody else who has sold you a computer pack-
age) tell it exactly what to do.

This is where the programming comes in. All the applications (uses)
noted above are really just examples of different computer programs. In
exactly the same way, there are a host of different types of computer simu-
lation but all are just computer programs. The techniques of computer
simulation are used to develop such programs. By applying these tech-
niques, some of which are more straightforward than others, practical pro-
grams can be produced which satisfy the criteria of doing what is required
in the way that is wanted.

But what is a computer simulation? — what separates it from all the
other computer programs? I shall give a basic description and then go onto
explain the important points. A computer simulation is a program which
duplicates or copies some of the features of something else (a system — the
first bit of terminology to get to grips with) and predicts what will happen
given various possible occurrences in a manner which is acceptable to the
user. You can see now why I avoided attempting to define computer simu-
lations in the Introduction — the definition is so vague as to be almost
useless without further explanation.

I can give you a practical example of a program which may at first sight
appear to be working as a simulation. The intention is to use the Super-
BASIC BEEP command to produce computer-generated music; to simulate
the workings of a composer. RND is used to produce a series of sounds.

100 REPeat key:noise

110 DEFine PROCedure noise
120 d=INT(32768*RND)

130 p1=INT(255*RND)

140 p2=INT(255*RND)

150 gx=INT(32768*RND)

160 gy=INT(8*RND)

170 w=INT(15*RND)

180 f=INT(8*RND)

190 r=INT(8*RND)

200 BEEP d.p1.p2.gx.gy.w,f.,r
210 END DEFine

The result does not sound like music. We need to define the difference
between ‘noise’ and ‘music’. Rhythm is a quality intrinsic to most types of
music. Changing line 100 to;

100 REPeat key:noise:PAUSE 10
improves our noise by adding rhythm, but there is still something missing!

100 N=10: REPeat loop:PAUSE 10:N=10+N-
50*(N=50) : RANDOMISE N:noise

Introduction to Simulation Techniques on the Sinclair QL

This line introduces repetition, a little more complex than expected due to
the cycling features of the BEEP command, so our program is giving us a
rhythmic, varying set of noises. Re-writing the program further:

100 N=1:0=N+.4:REPeat loop:PAUSE 10:N
=.1+N-0*(N=0) :m=SIN(N):noise
110 DEFine PROCedure noise
120 d=INT(32768*m)

130 p1=INT(255*m)

140 p2=INT(255*m)

150 gx=INT(32768*m)

160 gy=INT(8*m)

170 w=INT(15*m)

180 f=INT(8*m)

190 r=INT(8*m)

200 BEEP d.p1.p2.,gx.9y.w,f,r
210 END DEFine

takes advantage of the cycling and enhances and controls it to give a weird
series of musical scales, but should it be called a simulation of a composer?
We are simply using a modified set of random responses, and no composer
worthy of his name would call it a rival. It would perhaps be more accurate
to call the program a sound generator.

Additionally, and more importantly, we have not even attempted to
duplicate the process of composing; we have merely taken accidental
advantage of one of the built-in features of the computer. If we played
around with the program long enough we might end up with something
which was not too objectionable. We could not, however, credit the pro-
gram with having composed a masterpiece, and so the program is not a
simulation of a composer.

Systems thinking

In order better to define simulations, let me introduce the concept of
systems thinking. Calling something a ‘system’ is a technique adopted by
analysts (people who analyse things for one reason or another — systems
analysts, for example, specialise in computer systems and optimise such
systems in terms of hardware and software to best meet particular
requirements) to contain and describe the thing which they are analysing.
For example, a car designer may think of a whole car as a system. Describ-
ing it thus provides a guide as to what is contained within the system (the
car) and what is not contained within the system (the road, other vehicles,
the post office, etc.). There are two important qualities of a system: the
system itself, and the interface of the system (the way in which the system
interacts and communicates) with the non-system. In the case of a car these
two features are both highly complex. The car itself consists of thousands

10

Chapter2 WhenlwasaBoy. . .

of moving and non-moving parts — all the result of many years research
and development. The interface between the car and the outside world is
multi-faceted (don’t bother remembering that one — I don’t intend using it
again!), that is there are actually several interfaces: the car with the undu-
lations on the road, the car with the air that it is moving through, the
driver’s eyes and the road ahead and the constant pushing and pulling of
various control levers, and so on.

Now let’s extend the idea of systems a little further. Think of the
specialist engineer, working as part of a design team engaged in the
development of new cars (our previous system), who may be responsible
for just a single sub-system of the car. A sub-system, in this context, is itself
a system (say one wheel and its suspension) but is recognised as part of the
whole system (the car). This sub-system can be described conceptually in
the same way as the major system. That is, the sub-system has an interface
(relative movement of the car and the road) and it has qualities (spring rate,
damping, mass of moving parts, dimensions etc...) which define the way
the sub-system reacts to the things around it. Similarly, a part of the
suspension can be described as a sub-system in its own right. Thus we have
levels of systems and sub-systems which fully define the car design and are
useful in different ways. At the more detailed levels, specialist engineers
can consider individual components or functional groups of components.
These can be designed, tested, modified, and developed almost in isolation
from each other (careful here; obviously sub-systems must be compatible
with each other — this compatibility is achieved through careful definition
of the sub-system interfaces and by placing constraints on the system quali-
ties, such as size and weight).

Now comes the pay-off for thinking in terms of systems and sub-
systems. Each system can be simulated, once properly defined on a
computer. The sub-systems can be simulated and these simulations
combined together to give a complete simulation of the whole thing. A car
simulation can thus be developed which will allow the designer to test ideas
and optimise designs. Using a computer simulation makes sense
economically. The cost of hardware development for something as
complex as a car is very high indeed whereas computer simulations are
relatively cheap. Computer simulations also make sense from the point of
view of time expended. Several ideas can be tested in one day, using a
simulation, which would take several months without it. Nearly all car
designers and manufacturers make extensive use of simulations. Let’s not
get carried away, though, the simulations can only be used as design-aids
(tools for the use of the designer) and are only as good as the programming.
There are many areas of technology used in car manufacture which are not
easy to incorporate into a simulation, and in many cases the best solution
from a technical point of view is not acceptable for safety or aesthetic
reasons. The simulation is only useful up to a point.

11

Introduction to Simulation Techniques on the Sinclair QL

With a simulation available, the coarse level decisions about a car
design, such as engine type and size, suspension type, passenger seating,
and so on, can be evaluated and practicable concepts identified at a very
early stage. Further work, from the basic concepts, at a more detailed level
of component and component-group development will use sub-system
simulations to indicate the most appropriate hardware designs. Thus, a
new car can rapidly be outlined and defined, to quite a detailed level, in
terms of hardware design and performance — all on a computer.

So now I have outlined the basic concept of ‘systems thinking’ and its
relevance to computer simulations. Before we move on, I want to give you
something else to think about on the subject of systems. This is an exten-
sion to the use of the technique, which many people find difficult to under-
stand fully at first. Don’t worry too much now if you have difficulty with
the next paragraph — most practical simulations can be fully understood
by the application of common sense, and the full details of ‘systems
thinking’ are not required. If, however, you intend to spend much time on
simulations involving people or institutions then read on most carefully.

Anything can be described as a system, not just items of hardware as
described above. Thus, for example, a company board of directors can be
described as a system, as can a classroom full of kids. Anything which can
be defined as a system can be used as the subject of a computer simulation.
The sucess of a computer program in correctly simulating a system is
dependent principally on how well the qualities and interfaces of the
system are understood and described. Further, the characteristic which
ultimately defines a system, as separate from other possible systems, is the
description of the limits to the system. Thus the system of the car wheel plus
suspension is actually defined by the functional qualities of the suspension,
anything not contributing to the function of suspending the wheel from the
car (for example, the wheel arch) is not, strictly, part of the system. The
system limits may be functional, spatial, temporal, imaginary, or some
combination of these and others. A space-based video game is a simulation
of a system which is totally imaginary!

The user

But let’s get back to the simulation business. We can now re-state the
description of computer simulations thus: a computer simulation is a
computer program which duplicates the workings of a system and predicts
the responses of that system to external and internal events, giving output
in a manner acceptable to the user.

OK. So now we can cope with the system bit, and the internal and exter-
nal ‘events’ are just things which happen inside the system or outside the
system, but what’s this business about the output? In fact, this is one of
the things which separates good simulations from bad simulations. It is

12

Chapter2 WhenIwasaBoy. . .

vital that the simulation provides the information required of it in the most
suitable form. Remember that the simulation is supposed to be a tool: that
means that, even though it may be a masterpiece of programming, it will be
useless if it cannot do what the user wants. A user is the person (or group of
people) who requires to use the simulation. This is not quite the same thing
as the computer user. Usually, the author of the simulation is not the user
of the simulation but is probably the user of the computer, or, in the case of
commercial software, the author may be writing for unknown users. This
is of importance because the workings of the simulation will often have to
be designed around the output requirements of the user and these are often
not well defined at the start of program design. This makes things that
much tougher for the programmer, who must chose a balance between the
versatility of the simulation in meeting possible future requirements and
the complexity, and hence cost, of the program.

Thus, simulations are designed and developed to do a specific job and in
a specific way. They are in practical terms very limited copies of the
systems which they represent, often only representing a single characteris-
tic of the system. Simulations can be described as ‘functional’ represen-
tations of systems. That is, they copy some feature of the functioning of
the system. For example, when we looked at the system consisting of a car
suspension and wheel, there are a number of possible simulations. One of
these may indicate the dimensions of alternative designs, whilst another
will simply indicate how the forces from the suspension are transmitted to
the car, and yet another will investigate in detail the forces within the
components of the suspension itself.

Although we now have a description of computer simulations, I will not
attempt to develop this into a formal definition. I do not believe that it is
possible rigidly to define computer simulations as separate from other
computer programs. Many programs not usually thought of as simulations
use the same techniques, and can, in certain situations, be used as the basis
for simulations. Later in this book I give an example based on the use of the
QL Abacus spreadsheet program (Chapter 6).

Early hardware and simulations
The first computers were designed as number-crunchers. They performed
relatively simple (by today’s standards anyway), but highly repetitive, cal-
culations. Typical of the first applications were the generation of mathe-
matical functions and tables, and the calculation of shell trajectories for
artillery during the Second World War.

The UNIVAC 1 was the first commercially available electronic digital
computer (UNIVAC was purchased by IBM in 1949 — a very astute busi-
ness move indeed!) but it was not really until 1965 that commercial

13

Introduction to Simulation Techniques on the Sinclair QL

computers really became big business, with the introduction of the IBM
360 series.

Many more mainframe computers are bought for business than for
laboratory or scientific use. Business computers are used, in the main, to
process a great volume of data whereas scientific computers tend to be used
to process less raw data but a great many calculations are performed per
datum. It is the latter set of program applications which tend to include
simulations. The upshot of all this is that the simulation business is still a
young business. In practical terms, although much has been told of the
more glamorous simulations, the majority of simulations are under 10
years old.

As is to be expected, the first simulations were rather rudimentary and
simplistic. This was for three main reasons. Firstly, the computers availa-
ble before the mid-1970s were restricted in terms of speed and memory
availability. Secondly, simulation techniques and the approach required to
develop satisfactory simulations took time to evolve. Thirdly, simulations
need data and this data was often simply not available.

An example of this last point is the aircraft industry. It is possible to
simulate the aerodynamics (the interaction of a body with the air it is pass-
ing through and the resultant forces produced on the body) of quite
complex designs. Such simulations use equations and formulae which have
been available, at least in principle, since the middle of the century. When
computers of sufficient power to run such simulations became available to
the aircraft industry there was no immediate rush to transfer research
funds into the development of such simulations. Basic aerodynamic
research was at that time very much an empirical discipline. Knowledge of
the aerodynamic qualities of particular shapes of body was built up
through the testing of models, full-size test-rigs, and production hardware
in wind-tunnels, water-channels, and in flight tests. Combinations of
shapes (eg wings plus aircraft body) again were tested in model form to
obtain basic aerodynamic data. The data thus obtained was not directly
usable in simulations — it was never intended for such a use. The
development of simulations as useful tools for research and development
was along, slow, and expensive exercise. The traditional methods had to be
adapted slowly to provide data and to verify the accuracy of the simu-
lations as they started to produce results. These days, however, no self-
respecting aircraft/missile/car designer is without a sophisticated suite
of aerodynamic simulations.

An interesting example of a simple but very effective simulation from
the seventies is the well-known game called ‘LIFE’. Invented at Cambridge
University in 1970, this game simulates successive generations of a simple
life-form as it flourishes or dies, depending on a few basic rules governing
the life or death of individuals. In its simplest form, each member of a
‘community’ is represented as a letter O (or an asterisk or anything else will

14

Chapter2 WhenIwasaBoy. . .

do) set on a grid pattern. A member will survive if it has two or three
neighbours but die in any other circumstance (either of over-population or
under-population). A new member is born in any empty space which has
three neighbours. These rules are applied to the full grid area (typically a
VDU screen or teletype page) and repeated to represent succeeding
generations. The simulation is based on very simple rules but does simulate
some of the important aspects of life. The interest in the game comes from
attempting to set up an initial population which will eventually survive in
some stable form. This game, along with the original Adventure game, was
rumoured to be so popular with computer programmers at one stage that
many companies banned it from their computers.

Operational analysis

Operational analysis is the study of the operations of a system. Often the
systems analysed are financial or commercial systems although the more
famous examples include traffic flow on roads and around airports,
critical-path analysis, and time and motion studies. This has been the
happy hunting-ground for simulation engineers for a number of years.

A well-known development of the late sixties and early seventies much
used in operational analysis is the ‘Monte Carlo Simulation’. This is in fact
one of the basic techniques used in the simulation business (see Chapter 10)
which was rapidly and successfully implemented. The Monte Carlo pro-
cess really came into its own with the arrival of high-speed digital
computers. The technique is used to predict the final results of a series of
possible happenings. For example, if you wanted to find out how long it
might take to write a computer program, you might chose to simulate the
process using a Monte Carlo model. Suppose the program will consist of
ten subroutines, which must be written and tested in sequence, each of
which will take a minimum of one hour to write. Also, having written a
subroutine, there will only be a 10 per cent chance of the subroutine
working as intended first time. There is a 50 per cent chance that the
subroutine will contain bugs which will take a further hour to sort outand a
40 per cent chance that the subroutine will have bugs which will take two
hours to find and eradicate. How long will the program take to complete?
We know that the 10 subroutines will take a minimum of 10 hours to write.
Debugging time will vary from nothing to a maximum of 20 hours. Thus
we can say that the program will take from 10 to 30 hours to complete. But
this is no good for planning purposes, we need to know the average time as
well as the possible extremes.

A Monte Carlo simulation considers each of the activities (in this case
the writing of a subroutine is an activity) and selects a particular outcome
at random but determined according to the in-built probabilities (10, 50, or
40 per cent). Thus, for each subroutine a particular writing and debugging

15

Introduction to Simulation Techniques on the Sinclair QL

time is determined at random and a running total is built up of the overall
programming time. At the end of the simulation you are given a single
example of the time taken to write a ten-subroutine program. Unfortu-
nately you only have a single example so far. The simulation must be run
many times before you can be reasonably sure that you have sufficient
data, in the form of a whole series of simulated programming tasks, to
derive an average time. The average time taken is found by adding all the
results and dividing by the number of results. If you are particularly keen
to demonstrate this for yourself then you can write a simple simulation as
described above and run it a few times. There are a number of ways that
such a simulation can be written and I include below a listing of one of the
most obvious.

10 REMark SIMPLE MONTE-CARLO SIM
ULATION (SINGLE PASS)

20 P1=0.1:P2=0.5:P3=0.4:REMark

BASIC PROBABILITIES

30 TIME=0:REMark INITIAL TIME

40 FOR N=1 TO 10:REMark LoorP
FOR TEN “"SUBROUTINES”

50 IND=RND: REMark FIND

RANDOM NUMBER (0 TO 1)

60 EVENT=2:REMark THESE THREE LIN
ES SELECT ONE EVENT OUT OF

70 IF IND<=P1 THEN EVENT=1:REMark T
HE THREE POSSIBILITIES

80 IF IND>(P1+P2) THEN EVENT=3

90 SELect ON EVENT

100 ON EVENT=1

110 DELT=1:REMark TIME FOR EVE
NT ONE

120 ON EVENT=2

130 DELT=2:REMark TIME FOR EVE
NT TWwWO

140 ON EVENT=3

150 DELT=3:REMark TIME FOR EVE
NT THREE

160 END SElLect

170 TIME=TIME+DELT:REMark RUNNIN

G TOTAL OF TIME SPENT

180 END FOR N

190 PRINT “"TIME TAKEN TO WRITE PROGRA
M = “";TIME:"” HOURS”

Running this program around 20 times is sufficient to give, within one
hour, a result of the true average time (around 23 hours). You will notice
a few other points here which explain why Monte Carlo simulations were

16

Chapter2 WhenIwasaBoy. . .

quick to appear, what their benefits are, and what their drawbacks are.
They are simple to create: the simulation follows very closely the actions of
the system being simulated. But a large number of runs may be required
before a reliable average result is obtained, although this may not be
important. After a number of runs have been made, additional data is
available, such as the range of resultant times in the example above, which
can be very difficult to obtain any other way. Of particular note is the value
of Monte Carlo techniques to real-time simulations because of the close
representation of the actual workings of the simulated system.

Obviously, the Monte Carlo process requires a large number of calcula-
tions to be made to complete a single cycle of the simulation. This is where
computers came to the aid of a process already in use as the basis for many
non-computer simulations and really made it into a feasible method for
widespread utilisation (I’m sorry, I’m beginning to slip back into jargon —
computerspeak you might say!).

Industrial simulations

Another early application area for the use of simulations came from the
engineering industries. 1 have already talked of the car and aircraft
industries. These two examples are perhaps the most widely quoted, but
the general impact of computers on engineering as a whole has been very
pronounced. Many of the basic tools of the engineer are built around the
laborious repetition of various calculations. The desk calculator and, more
recently, the computer have changed the way in which engineers work.

In order to design a product (whether a bridge or a typewriter or any-
thing else) an engineer will always simulate the finished article. Until the
advent of the computer, such simulations consisted of drawings and hand
calculations. These were, in principle at least, readily transferable to
computer. In practice, of course, reality is a little different. Simulations are
certainly big business in the engineering industry but a lot of diagrams are
still drawn and desk calculators are well used. Simulations for today’s
engineer take the design and development process into a completely new
area. One of the truisms of computing is that computers do not replace
people, but they do change the way that people do things. Ten years ago, it
would not have been practical to use finite-element techniques to simulate
the time-transient behaviour of a North Sea oil-rigin a force 10 gale. Today
it is considered by many to be dangerous not to. In the main, the simu-
lations developed for and used by engineers tend to be complex and large.

The great growth of simulations has really occurred in the last 10 years.
Early work tended to be done in universities, in some of the larger engi-
neering companies, and in support of various studies by operational
analysts. As ‘computer literate’ graduates started to appear and computers
were made available to many more companies, the use of simulations

17

Introduction to Simulation Techniques on the Sinclair QL

became quite common. Recently, serious financial simulations have
started to appear (other than those used by the US government!), expert
systems are available commercially, video games are becoming more and
more sophisticated, and educational software is not far behind.

18

CHAPTER 3
But What Does This Little
Black Button Do?

How simulations are used

" Semutabins can 4 //ff&/
or AUt .

19

Introduction to Simulation Techniques on the Sinclair QL

The basic types of simulation

There are three basic functions for simulations — emulation, analysis, and
prediction. In the following sections I describe each of these, the uses to
which they are put, and some of the more important approaches adopted in
developing simulations.

Emulation simulations

Emulations are direct copies of real-life systems and are used either as
low-cost substitutes for use of the real thing or to represent situations
which would be impracticable to achieve using real hardware. Examples of
emulators include flight simulators, video games, war games, and some
engineering simulations.

The purpose of the emulation is to represent as realistically as possible
the time-dependent workings of the simulated system. It is this time-
dependency which is important, and programs are written around the
requirement to simulate the state or condition of the system at regular
intervals. The time taken between successive time intervals is known as the
simulation time-step. This time-step is not the time taken to perform one
loop of calculations but the time represented in the real system by the calcu-
lations. In many situations the complexity of the simulation will lead to a
computational time far in excess of the time-step. For example, a simu-
lation of the flight of a rocket may have a time-step of, say, a tenth of a
second whereas the computing time for each time-step may be several
seconds. The time-step chosen for a simulation of the tidal effects in a river
estuary, for example the River Thames upstream of the flood barrier, may
be of the order of 15 minutes but the computing time may be from under a
second to a few minutes depending on the complexity of the represen-
tation. In special circumstances it may be desired that the simulation time-
step and the computational time should be the same. Such simulations are
real-time simulations and are intended for direct interaction with a human
operator.

Here is a program that draws a clock with a second hand. It is a modifi-
cation of the program given in Chapter 1 and uses the turtle commands to
draw and ‘undraw’ the second hand.

100 MODE 256

110 CSIZE 2.0

120 INK 7

130 PAPER 1

140 CLS

150 CIRCLE 80,50,31
160 TURNTO O

170 PENDOWN

180 REPeat clock_hand
190 POINT 80,50

20

Chapter3 But What Does This Little Black Button Do?

200 INK 7

210 TURN -360/60

220 MOVE 30

230 PAUSE 10

240 POINT 80,50

250 INK 1

260 MOVE 30

270 END REPeat clock_hand

Butisit ‘real-time’? Changing the pause at line 230 will increase or decrease
the sweep-speed of the second hand. As long as the time the hand takes to
complete one cycle is the time which you require (it could be 1 minute, 10
minutes or even 1 hour), then it is.

Usually the sophistication of a real-time simulation is limited by the time
available for computing. If a long time-step is chosen, then the response of
the simulator to the actions of the operator will be slow. This may not be
important if you are engaged in the education of nuclear power station
operators where time-steps of the order of one second would be more than
adequate. A space invader game must respond very much more quickly,
however.

Obviously, all the computations for a single time-step must be com-
pleted before the end of the time-step. All inputs must be made, responses
of the simulated system to the inputs must be estimated, outputs must be
recorded, and the simulation set up for the next time-step. Very often,
simply writing down the list of operations to be performed for each time-
step will provide a structure for the program itself. Much more care is
required for real-time simulations, however, particularly with the timing
of inputs and outputs.

Analytical simulations

The second type of simulation is that used for system analysis. Examples
include financial models, expert systems, management information
systems, computer-aided design packages, and reliability assessment pro-
grams. Note here that not all the applications noted above need be simu-
lations, but simulations may well be involved one way or another. It is
rather dangerous to generalise about this group of simulations; they are
designed for a specific job and their program structures are very varied.
Some simulations are similar to the emulators described above but adapted
for a different use and modified accordingly. For example, a financial
package may be based on the emulation of the Stock Market, representing
the buying and selling processes, but modified to draw attention to particu-
lar points of interest, perhaps to highlight shares which are likely to change
rapidly in value. Rather than simply performing a time-step and dumping a
full set of data, additional calculations will be performed on the latest set
of output to analyse for points of particular interest. Also, comparative

21

Introduction to Simulation Techniques on the Sinclair QL

runs with different starting assumptions and different input data may be
used to indicate not just the absolute response of the system to varying
inputs but also to investigate the system sensitivity to inputs. This is the
‘rate’ at which the system response varies with a changing input. Real-time
emulators are not usually used directly for analysis but the results of a
number of runs of such a program may be recorded for future analysis.
Reliability assessment and critical-path analysis are worth a bit of
further consideration here. These are good examples of applications for
programs which take input in the form of a number of very similar data
items (all related in some way), and manipulate the data in such a way that
high-level information is output. In the case of reliability assessment, raw
data on the number and type of breakdowns of a product is combined and
processed to give an assessment of the overall reliability of the product, or
to identify particular problem areas, or to identify how the reliability has
been changing during development. Critical-path analysis takes a plan-
ner’s estimates for the duration and requirements of a number of tasks and
combines these to indicate the overall project timing and resource
requirements. In addition, the set of tasks which are most important to the
completion of the project (the critical path of tasks) are shown and the
program may indicate the best way to sequence tasks to minimise risks and
to make the best use of available resources. Large projects, such as
building works or product development programmes, rely heavily on
careful planning of the individual tasks. Raw materials must be ordered in
advance, a stable workforce must be maintained and provided for, use of
special equipment (such as expensive test equipment) must be planned in
advance, and so on. The difficulty of doing all this planning by hand and
being able rapidly to update such plans if required leads to a high demand
for programs which can automatically perform the necessary analyses.

Predictors

Finally we come to simulations designed to make predictions. Included in
the list are weather predictors, profit and loss predictors, reliability-
growth programs, and crisis forecasters. Yet again, these often are based
on emulation programs but are further developed in two important areas.
Firstly, these simulations take a starting situation (typically representing
time now) and simulate a number of time-steps into the future. Stored data
may be used to provide inputs as the program runs. The second important
feature of predictors is that they are usually developed to be able to make
use of poor data. This is data which is not well defined, may be non-
existent, or is known to be unreliable. As simulations predict further into
the future, or into other areas where knowledge is lacking, it is important
that the simulation give some indication of the confidence which can be
placed in the validity of its output. By making special provision for the use

22

Chapter3 But What Does This Little Black Button Do?

of data which is known to be poor, estimates can be automatically made of
the reliability of the output. Emulations without the added sophistications
noted above can be used to predict future events but must be used with
great caution.

A second major form of predictor is that which is based on the analysis
of trends in past data to predict forwards. Football pools predictors take
data in the form of recent results of games played, select those results of
particularly relevant games and use these to indicate the current perform-
ance of the teams involved. Armed with this indicator and the data on
where the game is to be played the program predicts the likely outcome of
the match, usually along with an indication of the probability of a suprise
result. This process is repeated for all the games appearing on the pools
coupon and a selection of the most likely results prepared.

Another example of a sophisticated trend-analysis predictor comes from
the financial world. Knowledge of the variation in value of stocks, shares,
commodities, etc., available on the world financial markets is vital for
investors and up-to-date knowledge can be the making of fortunes. Many
individuals and groups maintain predictors for various uses and of various
types. The most obvious are trend analysers, working on past data and
predicting forward days or even months. Other predictors remove the
time-dependency by relating one factor, such as the value of a particular
commodity (eg gold or oil), to another, for example some measure of over-
all level of trade. In times of recession or low levels of trading on certain
markets, such predictors can be useful in indicating the value of moving
invested funds from one market to another.

Use and abuse of simulations

In the preceding paragraphs I have given a brief introduction to the simu-
lation business, its history, and some of the major approaches adopted. I
may have made it sound as if simulations can be used for almost any pur-
pose. In a simplistic sense this is in fact true; you can if you wish simulate
almost anything.

However, there are many reasons why you shouldn’t bother. Many
problems are more easily solved without going to the expense of creating a
special simulation program. The example I gave of the simulation of
writing a computer program is a case in point. That particular problem can
be easily solved with a hand calculation, so why bother with a simulation
that requires to be run at least 20 times? Often, the simulator required to
mimic a given system would be too complex or difficult to verify (check the
correct operation of) and any results obtained would be suspect. This does
not mean that simulators should not be considered, it just means that other
means of obtaining the desired results should be investigated as well.
Weather prediction programs fall into this category at present — there is

23

Introduction to Simulation Techniques on the Sinclair QL

simply not enough data and knowledge available at present to make a very
large-scale simulation which produces acceptable results, but work goes on
to develop just such simulations. It must also be remembered that simu-
lations are simplified representations of systems and thus cannot fully
replace the real thing. Indeed, most simulators are very approximate repre-
sentations of systems which themselves are not fully understood and thus
simulators can only be used to give a rough idea of the system behaviour.

I want to make two more important points here. Firstly, as for most
computer programs, a simulation is only as good as its programmer and is
only as useful as its initial design constraints. Secondly, the major limita-
tion on most simulations is the basic understanding of the system to be
simulated. I don’t want to say more than this at present, but please remem-
ber what I said at the beginning of this chapter, that simulations are tools.
Tools can be used or abused but if used properly they can be of great
benefit.

24

CCCCCCCC

[patem for the programn...

Introduction to Simulation Techniques on the Sinclair QL

This chapter looks at the basic techniques which I suggest should be
adopted if you want to develop simulations which work as you want. I’m
not going to give you a great long list of points to check off, rather a set of
basic approaches which will help you avoid the major pitfalls and will by-
pass the common causes of delay.

The importance of defining the requirement

First define the requirement. This is the message that applies to all forms of
programming; any half-way decent guide to programming should stress
this one. Starting to write any computer program without defining the
ultimate requirement in some way is a bit like trying to train a monkey to
drive you to work, bits of the trip may be of interest but the journey is likely
to end in tears.

But what is a requirement and how do you go about defining it? The
requirement is based on what the user (the user, not the programmer!)
wants from the simulation. This simple observation becomes very clouded
when you actually start work on a new simulation; it is usual for the user to
have a very loose idea of what they want at the start of development and to
revise these wants as development continues. This in fact is one reason why
it is important to try and define as much as possible of the requirement
right from the start. If changes do occur, it is possible to go back to the
original requirement and decide whether modifications can be accepted or
whether the original requirement should be kept.

A first step is to try and write down the requirement. If this can’t be done
then forget the whole thing at this stage: if you can’t manage even a
description in written English then how can you expect to develop a concise
description in the very much more formal medium of a computer
program?.

The description should contain the following:

A definition of the system to be simulated, its limits, its functioning, and
the interfaces (remember, the inputs and outputs to the non-system).

What is desired from the simulation.

What data is, or will be, available and in what form.

What form of output will be possible and what will be most desirable.
How much time/effort is available for program development.

Other points.

26

Chapter4 Getting It Together

This last is a catch-all and will vary from case to case. Some of the points
which may be important are: what computing hardware will be used for
development; what computing hardware will be used to run the developed
simulation; will any other hardware be involved; what sort of organisation
will be using the simulation; is the simulation to be sold commercially;
what sort of testing of the simulation will be done; what developments
might be required in the future; and will the user require continued soft-
ware support. Some of these points are covered in the following para-
graphs but I make no apologies for avoiding discussion of each of them in
detail. In certain cases each of the points above may become important:

just how important and what form the importance may take will vary from
case to case.

Goods

1]

CUSTOMERS

P/
N 8\ § F e
DESPATCHES AN ® o & LructS
) ° S ~ 108
2\ % g &
e\ + & “\B(xc“
o 1nfor
ceipts
STAFF ACCOUNTANT
]
o
8 orde™s
stock »
o
out © age =2 3
<< E)
STORES . -
28 0%
Ven Y
-Ies
Ods in

INVENTORY

DIRECTORS

Order stock

SUPPLIERS

Figure 4.1: Rich Picture
Diagrams
Diagrams can be very useful for defining and analysing the system to be

simulated. These can start off as simple lists of the system components but

27

Introduction to Simulation Techniques on the Sinclair QL

can include many useful factors. For example, computer systems analysts
may use ‘rich pictures’ (Figure 4. 1) which show the parts of the organi-
sation which is to be provided with a computer system, say a wholesaler of
electrical components, on which communications can be indicated as
arrows. Thus the rich picture can show all the actions from receipt of an
order through the post, to retrieval of the desired order from the store, to
packaging the order, sending out the goods, recording remaining stock
levels in store, sending out bills, and so on. It is vital to identify these
communication lines if a computer simulation is to be installed, as the
computer will be providing many of them. Also, it is very likely that
improvements to the existing communications will be required and these
are most easily identified using a communications diagram.

Another form of chart used by systems analysts and simulation engi-
neers is the ‘function chart’ (Figure 4. 2). This quite simply is a means of
noting down, in a reasonably formal manner, a breakdown of the func-
tions of an organisation. Thus, using our example above, the function of
Joe Bloggs of the packing department may be to collect a store’s order
form and pass this to Bert (stores), wait for the items to be dug out of the
box at the back of the warehouse (or take back an out-of-stock message),
sign a receipt for the goods, obtain packaging materials (probably with
more paper work involved), package the order, and so on. The function
chart, when expressed in this way, has obvious connections with the rich
picture.

ORDER
PROCESSING

CUSTOMER
ACCOUNTS
ORDERED ORDERED
DESPATCH sty BY BY
: POST TELEPHONE
PACKAGE UPDATE o UPDATE SEND OUT UPDATE SEND OUT
- nvenToRy | [STAYERENT ACCOUNT RECEIPT BOOKS INVOICE

Figure 4.2: Function Chart

A more basic diagram technique, which I often use when struggling to
define the operation of a new system, is the ‘causal diagram’. This diagram

28

Chapter4 Getting It Together

concentrates on the possible responses of a system to different situations.
For example, a very simple causal diagram might consist of:

Fire — Smoke — Alarm

This means fire causes smoke which causes an alarm. The arrows show the
‘causal links’ between possible system characteristics. If we are interested

in looking more closely at the consequences of fire then we can extend the
diagram as in Figure 4.3.

Fire — Smoke — Alarm — Auto-sprinklers on
N v
Heat — Damage of various sorts
¥
Replacement/Repair costs

Figure 4.3: Causal Diagram.

Notice that I am mixing several types of item on the diagram: some real
components of the system, some financial, and some just describing
responses of the system.

Feedback

I’m going to digress a little here, while I’m on the topic of causal diagrams,
and introduce the concept of feedback and feedback loops of various
types. In the example above, the switching on of the sprinklers should
result in a reduction of the intensity of the fire, less heat and smoke, and so
less damage (but some water damage). Here is a simple form of loop — the
fire causes the sprinklers to come on which damps down the fire. This loop
is called a closed loop, the loop operates automatically and is contained
within the system itself. An open loop requires the action of something
external to the system, for example the local fire brigade, to complete the
loop.

The program listed below demonstrates a feedback loop. If you type in
and run the program you will see a “*’ in the centre of the screen. You can
move the ‘*’ using the cursor keys to the left and right of the space-bar.
Notice how the program reacts to your movement of the ‘**!

100 MODE 256

110 CSIZE 2.0

120 INK 7

130 PAPER 1

140 CLS

150 CURSOR 200,100

29

Introduction to Simulation Techniques on the Sinclair QL

160 PRINT " *”

170 GX=-.1

180 GY=-.1

190 X=0

200 Y=0

210 REPeat FEED_BACK

220 1 $=INKEYS$

230 IF 1$<>"" THEN

240 REPeat KEY_LOOPY:J$=INKEYS$:IF J
$<>1$% THEN EXIT KEY_LOOP
250 END IF

260 I1=CODE(1I$)

270 SELect ON |

280 ON 1=208

290 Y=Y-10
300 SCROLL -10
310 ON 1=216
320 SCROLL 10
330 Y=Y+10
340 ON 1=192
350 PAN -12
360 X=X-12
370 ON 1=200
380 PAN 13
390 X=X+12

400 END SELect

410 DX=INT(GX*X+.5)

420 PAN DX+ (DX>0)

430 X=X+DX

440 DY=INT(GY*Y)

450 SCROLL DY

460 Y=Y+DY

470 END REPeat FEED_BACK

This is an example of feedback being used to control something, in this case
the position of the ‘*’.

Many simulations involve feedback of one form or another and this can
become a major problem during the development of the program. Feed-
back can be represented in a number of different ways. If the wrong
approach is adopted, then it is possible for the program to become
numerically unstable (the output starts to oscillate and will usually produce
results which are obviously incorrect) or the feedback item will be ignored.
If you experience such problems then all I can realistically suggest here is to
read an introductory book on control theory — I cannot do justice to the
practical representation of all possible forms of feedback. Some odd
comments though: a common source of error in feedback representation is
selection of too long a time-step, try a shorter time-step if you suspect er-
rors; sometimes a process of iterating on to a valid result, by repeating a feed-
back operation several times over for each time-step, will be required; pay

30

Chapter4 Getting It Together

very careful attention to the limits within which your various equations and
so on are valid, many problems only appear when you approach or acci-
dentally exceed these limits - a knowledge of mathematics is very useful
here.

Now back to the main feature.

Simulation structure

Having written down the requirement, supported by diagrams, a number
of possible actions are open to you. You can, if you so desire and you want
to take the risk, dive straight into computing. This is only advisable,
however, if the simulation is very simple (like the example given in Chapter
2) or you are very familiar with all aspects of the simulation techniques to
be used and the system being simulated. In most cases the next stage after
defining the initial requirement is either to re-write the requirement in
greater and greater detail, until you are satisfied that you can do no better,
or else to begin to define the structure of the simulation and the techniques
which you are going to use. The first course is better if the simulation
requirement is particularly well defined or particularly badly defined. If
well defined, then the simple process of repeatedly writing down the
requirement will very often also serve as a pattern for the computer pro-
gram. A straight translation of the text will give the functional parts of the
simulation, all that need be added will be the supervisor routines (to guide
the simulation activities) and input/output routines. If the basic
requirement is particularly badly defined, the repeated re-writing of the
requirement will help to concentrate the mind on those features which are
probably more important.

Defining the overall structure of the simulation and beginning to define
the techniques to be used is a logical precursor to the writing of the pro-
gram. I have the rather bad habit of attempting to do most of this in my
head, with the consequence that I often lose ‘brilliant’ ideas somewhere
’twixt brain and keyboard. My advice to youis to start off at least by getting
something down on paper. Start at a high level, that is decide on the overall
workings of the simulation before looking at the detail of any one part. Use
diagrams, words, notes, whatever helps you think about the problems of
programming. Also bear in mind that you will probably want to refer back
to these scribblings at a later date to try and find out what has gone wrong
or to find out just what it was you were thinking of in the first place!

Chosing the basic technique
Having gone through the process of defining just what is wanted from the
simulation, it is time to look at how to get the thing working.

The descriptions given in Chapter 3 of the basic types of simulation

31

Introduction to Simulation Techniques on the Sinclair QL

which can be developed will have given you an indication of the range of
possible approaches which will be needed. Very few simulations are of
systems which will react in only one way to a given situation. In nearly all
cases we must allow for the system to react in several possible ways to any
particular set of circumstances. It is normal to define the system reactions
in terms of probabilities. To each possible reaction, a probability of that
reaction is defined. Let’s put that into simpler terms. If a system can react
in one of several ways, we must know which reaction is most likely and by
how much before we can simulate that system.

Monte Carlo

The differences between the basic types of simulation centre on the way in
which we deal with these probabilities. The Monte-Carlo process described
in Chapter 2 is one way of simulating system responses to various
situations. In the Monte-Carlo process, a single response is selected
randomly according to the probabilities of all possible responses.

Deterministic
Another process which is often used instead of the Monte Carlo process, is
the deterministic process. In the deterministic process each system
response is determined from the most probable response. If, for example,
three responses are possible in a given situation with probabilities 0.15,
0.45, and 0.4, the deterministic process will always select the response with
a probability of 0. 45. The other system responses will never be simulated.
The deterministic process is useful in emulations of large systems, particu-
larly real-time simulations, where a single run-through of the simulation is
all that will be made. Examples of simulations often based on the determi-
nistic process are weather predictors, election forecasters, video games,
financial models, and some of the simulators used for training personnel.
A note here about deterministic models. Often a deterministic approach
is the only way of realistically simulating large and complex systems but it
can lead, in some cases, to unreliable conclusions. A good exampleisin the
long-term prediction of the weather. A huge quantity of data is required
and much of this is difficult to obtain. In consequence it is difficult to fully
describe the starting system-state: the current condition of the system is
known as the system-state. At each time-step in the simulation process, a
new system-state is derived. However, real life does not always follow the
most probable course and thus there will be differences between the predic-
ted system-state and the real weather. These differences will grow with
each time-step and it has been found that the long-term prediction of
weather patterns is a very difficult task. The real-life system is simply too

32

Chapter4 Getting It Together

complex and possible responses too varied to permit reliable simulation,
even on the most sophisticated computers available.

A common extension to the deterministic process is to incorporate a
form of accumulator which records system responses and biases future
probabilities accordingly. Thus the system response can be prevented from
entering into a long series of actions which can be justified individually but
which are unlikely when combined together.

Markov chain
Both Monte Carlo and deterministic processes, and the simulators based
on them, result in serial operations. One action follows another, and each
action leads on to a further operation. There is another class of processes
which result in parallel operations. These are processes which simulate
more than one possible response of the system to a given situation. Obviou-
sly, a simulation such as this must maintain a running record of several
system-states. One process which keeps a record of all potential system-
states is the Markov chain process. In its most useful form, two matrices
are set up (I’m not about to explain matrices to you — in this case they are
used as a means of storing probabilities and formulae). The first matrix
holds a running record of the various possible system-states. There must be
a limit to the total number of possible system-states and the state-matrix
holds a set of probabilities of the system being in each of these possible
states. At the start of the simulation the state-matrix will usually hold a
probability of one in the location representing a single starting state and
zero probabilities representing all the other possible system-states. The
second matrix is called the transformation-matrix and holds a series of
equations which determine the way in which the system can change from
one state to another. Often the equations in the transformation-matrix are
reduced to simple probabilities. Possible system-states are numbered and
the equations of the transformation-matrix give the individual rela-
tionships of each numbered system-state to each of the other system-states.
At each time-step, or point in the simulation where a system response is
to be modelled, the state-matrix and the transformation-matrix are multi-
plied together to give a new state-matrix. The probability of the system
being in any of the possible system-states is thus continuously available.
There are other parallel processes, such as the branch-search sometimes
used in chess-playing computers, but the Markov process is the most
widely known.

Technique to suit the simulation
It is not unusual, particularly in the analysis field, to create a new process
for each new simulation. This is because the requirements of the simulation

33

Introduction to Simulation Techniques on the Sinclair QL

are likely to be too individual and the computations too complex to make
use of one of the text-book processes. For example, many practical parallel
processes do not keep track of all the possible system-states but only those
which are of most interest. This can greatly reduce the computing time.

Another possibility is, at each stage in the simulation, to calculate-an
‘average’ system response or state. Typically this will use a number of
separate system responses, much as used in a Markov process, which are
multiplied by their relevant probability of occurring, and added together.
This technique is valuable in situations where the system is free to respond
in a range of ways rather than in a limited number of discrete ways. An
example, which also shows up the dangers of this particular technique,
could be a simulation of the throwing of darts at a dartboard. Suppose we
represent the throwing action and the flight of the dart as a simple probabi-
lity distribution — that is we define a set of probabilities (adding up to
oneif totalled) of the dart ending up at any position on the dartboard for any
particular throw. The averaging process will typically calculate the dis-
tances of each possible position on the board from the centre and the rela-
tive angle of each position from the upright. Each such distance/angle is
multiplied by a probability provided from the input probability distribu-
tion and added into a total figure which directly gives an average result. If
the probability distribution is symmetric — that is, there is an equal chance
of hitting above or below the centre and left is as likely as right — then the
‘average throw’ will land dead centre. Obviously this result is of little use to
us when stated in this form; we know that the important thing about darts
is not what the average throw gives but what happens on average over a
series of throws. It is the spread of results about the average (or mean)
position which is more likely to be of interest, and some additional calcula-
tions are necessary to obtain this information.

The example just given is a useful one with which to compare the
responses of the various processes which I have been discussing. A Monte
Carlo simulation would give a random dart position, different for each run
of the simulation. This would give the closest representation of the actual
system in action. A deterministic simulation would give a single dart posi-
tion each time, dependent on the highest probability. If the thrower has a
tendency to drop every fifth dart in their foot then this is probably the
result which would always be indicated by the deterministic simulation.
The averaging process, as indicated above, will show what is the average
result of a number of runs. A parallel process simulation will give an
output indicating all possible dart positions and their likelihood (in this
simple example this will just be an output of the probability distribution
which we input in the first place) and will probably also give some further
analysis of the most likely dart positions.

Some simulations combine characteristics of Monte Carlo, determinis-
tic, averaging, and parallel processing, using the appropriate techniques in

34

Chapter4 Getting It Together

different parts of the simulation. The choice of a particular technique will
depend on the requirements of the simulation, the nature of the system,
and the various restrictions on computing power, time available, data
availability, and so on. The specialist chapters of this book give examples
of my decision-making process and the consequent adoption of various
techniques. One of the important restrictions on the simulations covered
by this book is that I must keep the programs as short as I can whilst
demonstrating the techniques. In your simulations_you will not have this
constraint but it is likely that some other factor will be important: you must
think long and carefully about the basic techniques available to you and
just what the advantages/disadvantages of each will be.

Development of the simulation

You know what you want to do, you know how you want to do it, but how

do you actually set out to create a program to make the thing real?.
There is more than one way to skin a cat (or write a program!). Below is

given a program which moves a ‘*’ around the screen using the PRINT
command:

100 MODE 256

110 CSIZE 2,0

120 INK 7

130 PAPER 1

140 REPeat square

150 X=12

160 FOR Y=4 TO 14

170 X_Y_PLOT X.,Y

180 END FOR Y

190 Y=14

200 FOR X=12 TO0 22

210 X_Y_PLOT X.,Y

220 END FOR X

230 X=22

240 FOR Y=14 TO 4 STEP -1
250 X_Y_PLOT X.,Y

260 END FOR Y

270 Y=4

280 FOR X=22 TO 12 STEP -1
290 X_Y_PLOT X,Y

300 END FOR X

310 END REPeat square

320 DEFine PROCedure X_Y_PLOT (X

L Y)
330 LOCal n
340 CLS

350 FOR n=1 TO Y
360 PRINT
370 END FOR n

35

Introduction to Simulation Techniques on the Sinclair QL

380 FOR n=1 TO X
390 PRINT " "
400 END FOR n
410 PRINT " *~
420 END DEFine

Run it and note how fast the ‘*’ moves.

The QL also has a CURSOR command, and using it instead of PRINT
gives quite a saving on program lines. Replace lines 330 and 340 with the
lines given below;

330 CLS
340 CURSOR 12*X,10*Y

and delete lines 350 to 400. Do you think the ‘*’ moves any faster?
Another alternative is to use SCROLL and PAN. An even greater saving
in program lines, but what about the speed of movement this time?

100 MODE 256

110 CSIZE 2.0

120 INK 7

130 PAPER 1

140 CLS

150 CURSOR 120,40

160 PRINT "*”

170 REPeat square

180 FOR N=1 TO 10:SCROLL 10
190 FOR N=1 TO 10:PAN 12
200 FOR N=1 TO 10:SCROLL -10
210 FOR N=1 TO 10:PAN -12
220 END REPeat square

It is important when writing programs to consider all possible alternatives.

Different programmers work in different ways. Some draw up detailed
flowcharts (diagrams showing the functions of each part of the program
and indicating connections between different parts of the program) and
only convert these into a program when happy that they have the whole
thing sorted out. Other programmers work very much from their heads
and start writing program lines right from the start. I tend to be one of the
latter, but I can see the value in being more systematic about programming.

At the very least, I think that it is well worthwhile writing down a basic
block diagram of the major subroutines which you are going to have to use.
This diagram will, in the first case, be based on your description of the
requirement and your choice of simulation technique. You will need a
main or controlling routine: this is a routine which determines the overall
functioning of the program, calling specialist subroutines as required.
Next come the input and output subroutines, based on data availability

36

Chapter4 Getting It Together

and the user requirements. One or more routines will be required to set up
initial values for various program variables and to do any manipulation of
the input data required before the main functional parts of the simulation
are started. These main functional routines will be determined by the tech-
niques to be used and the system to be simulated. A small number of simple
subroutines may be required, called directly from the main routine, or, at
the other end of the scale, many levels of subroutine may be required repre-
senting different possible responses of the system. Whichever the case, this
is where the value of a block diagram is really shown: keep a close eye on
how the simulation is developing and you are much less likely to suffer
unpleasant surprises.

How you go about writing the subroutines themselves (programmers
call this coding, despite the fact that it has been many years since
computers would only accept machine or assembler code instructions) is
up to you. I think that the most logical method is to keep on dividing up the
description of the functioning of the subroutine until you can’t describe it
in any greater detail. At this stage each functional description can be con-
verted into a program line. That is the logical approach but not the one
which I usually adopt, I tend to start at the beginning and work my way
through to the end. This is not always a good idea and I would advise you to
attempt to do things the logical way rather than pick up my bad habits.

Keep notes on your use of variables, try to make the names of the varia-
bles meaningful so that you will be able easily to understand the program
when reading through a listing, but do keep those notes. Note down the
description of each variable and, if possible, the relationship of that varia-
ble to other variables.

Verifying the model

As each subroutine is completed, it should be possible to make up a simple
test to make sure that the subroutines work as they are supposed to. A more
important level of testing must be performed when you get the whole pro-
gram together. The full workings of the program must be verified before
the simulation can be used for its intended purpose. This isn’t just a simple
process of performing various runs and correcting any ‘bugs’ that appear.
A systematic series of test runs must be planned and executed. Records
must be kept of the results of these tests and the results carefully evaluated
to detect any sources of inaccuracy. Tests to be completed include such
things as running the simulation with zero inputs, in the expectation that
the simulated system will remain in a stable state; running the simulation
with very much simplified inputs; and running the simulation with a set of
very extreme inputs. These tests will indicate any major errors but no test
can be guaranteed to reveal everything: this is why careful planning and
evaluation of the test runs is important.

37

Introduction to Simulation Techniques on the Sinclair QL

One last piece of information, before I quit this chapter, concerning the
use of a simulation for analysing the sensitivity of a system to changes in
input. I am bringing this to your attention here because a simple form of
sensitivity analysis can also be used to indicate possible errors in the pro-
gram which would otherwise go unnoticed. This sensitivity analysis is
typically performed by keeping all but one of the inputs constant for a
short series of runs. The remaining input must be given several different
values as the test proceeds and the responses of the simulated system noted.
By plotting the results of such a series of tests on graphs for each of the
various inputs, any particular sensitivity of the system can be readily
identified. For test purposes watch out for unexpected sensitivities, beha-
viour which appears unpredictable, and any response which otherwise
does not agree with your understanding of the system. If any of these cir-
cumstances applies, then get suspicious and check the workings of the pro-
gram once more, preferably setting additional runs.

38

CHAPTER 5
QLued Up and Ready To Go

What the QL can do

" 5/]55///3 /f;/mfaal L

39

Introduction to Simulation Techniques on the Sinclair QL

Although simulations are programs, they are also designed around the
particular characteristics of the computer hardware being used.
Obviously, not all simulations can be run on all computers. The power,
memory, operating system, and hardware peripherals all determine what
can and what cannot be simulated on a given computer. This chapter
considers the Sinclair QL and determines its strengths and weaknesses.

Basic description

If you have a QL, or have thought seriously about getting one, then you
will already know the basic construction details of the machine. I want to
go over these once more, however, and point out those features which are
particularly important to the budding simulation engineer.

The Sinclair QL is a microcomputer. This means that it is based around a
special integrated circuit (usually called a chip because the circuit itself is
formed on a very small chip of silicon) called a microprocessor. This device
is special because it permits logical operations to be programmed by a user
and can hence be used as the basis for a number of types of equipment,
including computers. The microprocessor is also important because it is
relatively cheap. A microcomputer can provide many of the facilities of a
full-scale computer (now usually called a mainframe computer, or a
minicomputer if it can be easily installed in an ordinary room) but at a
fraction of the cost.

68008

Different microprocessors have different capabilities and can perform at
different speeds. It is the Motorola 68008 microprocessor which is used in
the Sinclair QL and this is a particularly powerful microprocessor, both in
terms of the types of operation which it can perform and the size of
numbers which it can manipulate internally. The size of numbers which
can be manipulated by the microprocessor is often referred to as the
number of bits that the microprocessor can work to. The bits talked of are
actually a string of ones and zeros used by the machine to represent
numbers. With more bits, larger numbers can be represented directly and
time will not be lost pushing data into and out of memory whilst
computing.

Early microprocessors were 4-bit machines and could thus represent
numbers between zero and 15 (one less than two to the power four). When
numbers are larger than this, the microprocessor must be programmed to
perform a series of chained operations shunting data backwards and
forwards internally and in memory. This takes time and uses up the
available memory.

The home computer business has been founded on the use of 8-bit

40

Chapter5 QLued Up and Ready To Go

microprocessors. These can represent numbers between zero and 255 (one
less than two to the power eight). For a typical microcomputer application,
between four and six of these 8-bit numbers are combined together to
represent realistic numbers and special algorithms are programmed in to
perform number operations. The Motorola 68008 uses numbers internally
which are 32-bits long and can thus be used directly to represent real
numbers from zero to over four thousand million: obviously with this level
of direct representation it is easier to construct short algorithms to perform
operations on real numbers. The number of computing steps required to
perform a given operation which is arithmetic can be reduced as the
number of bits increases and hence the time taken to perform such
operations comes down. Thus we would expect the Sinclair QL to be a fast
machine, and such is the case.

However, although the 68008 is internally a 32-bit microprocessor, it is a
special processor which communicates with the memory and external
devices using eight bits only — the full 32-bit numbers are transferred in a
series of four steps. This is done in order to reduce the cost of the rest of the
computer but does mean that the full potential for high speed operation is
not realised. This situation is quite common with the most recent crop of
microcomputers. A common choice of microprocessor is the Intel 8088,
which is a 16-bit processor which communicates with eight bits. The 8088 is
used in the IBM microcomputer range and by many of the business
machines which are designed as compatible with the IBMs.

I used the short BASIC program given below to give a comparison of the
Sinclair Spectrum (8-bit processor), the QL (32-bit processor with 8-bit
communications), and a contemporay 16-bit business machine (16-bit
processor with 16-bit communications).

10 DIM 0(1000)

20 FOR N=1 TO 1000

30 LET M=N

40 IF (M>500) THEN LET M=500

50 LET O(N)=INT(N*M*LOG(N)+.5):REM FO
R QL USE LOG10(N)

60 NEXT N

70 PRINT "LOOP FINISHED”

80 STOP

The Spectrum took 1 minute 33 seconds to run, and the business machine
took 24 seconds to run. If you try running this program on the QL, you will
find that it is comparable with the business machine. Re-write the program
using SuperBASIC’s short-form FOR command:

10 DIM 0(1000)
20 FOR N=1 TO 500:0(N)=INT(N*N*LOG10(
N)+.5)

4]

Introduction to Simulation Techniques on the Sinclair QL

30 FOR N=501 TO 1000:0(N)=INT(N*500*L
OG10(N)+.5)

40 PRINT "FINISHED LOOP”

50 STOP

and you will find that the QL’s run-time is considerably reduced. This
simple bench test, involving a selection of functions, comparisons, and
loops, shows how well the QL compares with other machines. Notice
however that the bench test does not include any screen operations. The
QL does not display things quickly, the sophisticated window facilities
slow things down somewhat.

Other hardware

Sinclair has provided a second processor on the QL, the Intel 8049, which
controls communications between the main processor, the keyboard, an
RS232-C receiver, and a sound generator. The two processors are also
supported by two specially-designed integrated circuits which handle the
TV display, memory operations, and other hardware operations. All these
hardware sophistications take some of the computing load off the main
processor and thus leave it more time to run programs.

In addition to the powerful microprocessor, the Sinclair QL also has a
number of other hardware features which are of interest. The size of the
memory is 128 kilobytes (eight bits make one byte and a kilobyte is roughly
a thousand bytes). This is considerably more memory than most other
home computers, but is a common size in business machines. Memory is
required for holding programs and for storing data. The larger the
memory, the more complex the programs which can be stored or the more
data which can be accessed by the program. An expansion of the memory is
available which gives a total of five times the basic memory. This is a very
large memory capability for a microcomputer and is provided principally
to allow several programs to be held in memory and run at one time. It also
has important implications for running certain types of simulation, as
large data-bases and arrays of data can be built up.

Two microdrives are provided which can be used for program storage
or, more importantly from the point of view of the running of simulations,
allows programs to access data stored previously in a data-bank which can
be very much larger than the memory directly available on the
microcomputer. The microdrives are not as fast to use as other possible
storage methods and only provide a limited storage potential, but they at
least provide some capability.

A network facility is built into the QL, allowing it to communicate with
other Sinclair computers at high speed. This facility can be very useful for
simulations which represent a number of interacting systems, particularly
if real-time operation is required. Such applications are beyond the scope

42

Chapter 5 QLued Up and Ready To Go

of this book, however, and I shall resist the temptation to talk about the
rather interesting simulations which can be set up using networks.

Display facilities on the QL are as good as, or slightly better than, most
home computers and as good as most of the non-specialist business
machines. The computer is designed to be compatible with ordinary UHF
television receivers and this puts a limitation on the detail which can be
displayed. There is also provision for display using a monitor, which
provides improved capabilities. The display is not markedly superior to
many other machines, however, and real-time simulations showing highly
detailed scenes cannot be expected to be possible. Special-purpose
microprocessor systems are available which can produce very high
resolution displays for use in graphics applications. Such machines are
very expensive, however, and rely on special hardware for the storage and
display of screen information. Such machines are used for computer-
aided design, network manipulation, and graphic representation. The QL
is not outstanding in this area and its capabilities in these particular
applications are limited.

Other hardware features are of lesser importance to the running of
simulations: the quality of the keyboard is not usually a limiting feature;
the types of noise which can be produced are important to speech synthesis
and music production and the QL really needs additional external
hardware to be used for these applications; input and output facilities to
external hardware can be vital for some types of simulation but the QL
offers no notable features in this respect and provides facilities as good as
most other microcomputers.

Software

This brings us on to software. There are three points that I want to make:
the internal operating software of a microcomputer is important to the
applications which can be run, the software packages available for a
machine may be useful for simulations, and the language used by the
computer is also important.

Firstly the operating system. The way in which a computer operates
determines how fast it runs, how much memory is actually available for
programs and data, and what sort of operations can be attempted. The
Sinclair QL is particularly strong in most respects, access to memory is
good, use of various parts of the screen is easy, input and output using the
RS232-C interface and the NETwork is made simple. The creation of
machine code subroutines is not so easy, however, and really requires the
use of additional software.

Software packages available with the QL are intended primarily for the
small business and provide the usual basic business facilities of
spreadsheet, word processor, and simple data-base. Also included with the

43

Introduction to Simulation Techniques on the Sinclair QL

QL is a graphics package which can be used to set up quite good formats for
the display of various forms of data. This package is less common on
business microcomputers but is a boon for many applications: it is often of
great use to be able to present the output of a simulation in graphical form,
a well thought-out graph being worth many thousands of numbers. The
data-base program is of less use. I tend to find general-purpose data-base
programs are rather slow to use as part of a simulation and it is usually
easier to create a special-purpose subroutine.

Finally I come to the programming language provided as standard on the
microcomputer. For the QL, this is Sinclair SuperBASIC, which provides
a versatile language for the programmer and is considerably in advance of
that provided on most other microcomputers. However, although
SuperBASIC is in advance of most other forms of BASIC and some of the
other alternatives in being reasonably fast whilst simple to use, it is
nowhere as fast in operation as the compiling languages available on
mainframe and minicomputers, on which many of the simulations
developed to date have been run.

Simulations on microcomputers
Simulations are greedy programs. They nearly always demand a lot of
memory for the program or the data and also require a fast processing
speed. This explains why microcomputers are not usually the ideal form of
hardware on which to try to develop and run simulations, as
microcomputers are usually rather slow and have very small memories.

Some generalisations may be in order here. Complex programs can be
written in perhaps 10K of memory, but additional memory is required for
data. This additional requirement could range from perhaps two to many
tens of kilobytes. Thus, if a microcomputer has less than, say, 20K of
memory readily available, then you can predict that problems with
memory are going to be a prime concern with simulation programs.

Speed is required not just by real-time simulations but also by most other
simulations in order to permit a large number of runs to be made and, of
course, to stop the operator getting too bored. If a program takes much
more than an hour to run, and this is not so unusual for many applications
on microcomputers, then the development and testing stage can be
something of a trial. There are various ways of speeding up computing on
microcomputers, including using machine code and adopting special
programming techniques. Such considerations are beyond the scope of this
book and I can only say here that the faster the programming speed of the
microcomputer the better.

Arithmetic accuracy can be a bit of a problem with microcomputers,
particularly as simulations often rely on the precise calculation of
probabilities. Generally, however, as long as the programmer is aware of

44

Chapter5 QLued Up and Ready To Go

the limitations of the software, it is relatively easy in most cases to
compensate for any potential problems. Some microcomputers allow
integer numbers, real numbers, or double precision numbers to be used,
with the simpler data offering much higher processing speeds. The Sinclair
QL offers a choice between integer and real numbers with a very high
precision capability available for real numbers, higher in fact than most
other machines operating in double precision mode.

Display capabilities affect output from the simulation, and a great
variety of display formats are available on microcomputers, ranging from
simple text displays in black and white only, to quite good resolution in
colour. A point to note here, though, is that the more complex displays
usually require more memory and this may well eat into the memory
available for the programmer’s use. Real-time simulations, and in partic-
ular video games, make the heaviest demand on display capabilities for
most home-based microcomputers. whilst the display of complex designs
and networks demand very high resolution capabilities for business use.

Facilities for microcomputers to communicate with external devices,
such as measuring equipment, data loggers, other computers, and so on,
are usually rather minimal on microcomputing systems. Some
microcomputers are designed to be used in laboratory environments as
well as at the office or at home, and suitable interfaces are provided. This
tends to be an exception rather than the rule however. Sinclair computers
have made provision for connection to external devices by providing a
comprehensive expansion-connector which brings the main address, data,
and control lines used by the main processor out of the machine. Such a
means of connection is extremely versatile and caters for nearly all
potential requirements.

QL benefits

Any computer has its own series of potential benefits and restrictions. At
the start of this chapter I quickly described some of the important char-
acteristics of the Sinclair QL and then went on to note some of the general
comments which can be made about microcomputers as a class. In the next
few paragraphs I will summarise these comments and pick out the most
important factors, as I see them, when using the Sinclair QL for running
simulations.

The Sinclair QL is a fast machine with a relatively large memory. The
memory can be expanded to a level not previously available on any
mass-production microcomputer. Both these features are vital for
simulation programming. Bench tests of the speed of the QL compared to
other popular home and business microcomputers indicate that it is indeed
very fast. However this speed is still very much slower than that available
on mini and mainframe computers.

45

Introduction to Simulation Techniques on the Sinclair QL

Storage facilities on the QL, the microdrives, are adequate but by no
means exceptional when considered technically. Of course, the low cost of
the Sinclair QL derives largely from the use of microdrives rather than
possible alternatives such as disk systems.

Software available on the machine can be useful for some simulations,
although it is not designed with this use in mind. SuperBASIC is quite a
good language which is very easy to use, but a language which could be
compiled into a faster running format and one which included matrix
operations would be better suited to simulation running.

The special ability of the QL to run separate programs in parallel is of
limited use for most simulations. It is possible to run separate parts of a
simulation at the same time, or to treat separate programs as if they were
being run on different machines, but the genuine applications are few.

Access to external devices is potentially very good, making practical use
of the computer with other equipment a real possibility. The networking
facility may be of considerable interest to some users of simulations,
particularly in the games field, but does not add much to the general
capabilities of the machine.

46

CHAPTER 6
Laughing All the Way to the Bank

Money models

o wcte howe //aa‘f?, '

47

Introduction to Simulation Techniques on the Sinclair QL

This is the first of the practical chapters of this book. From here on, I
discuss each of the major application areas in turn and present some simple
practical examples of simulations which might be developed. It is not my
intention to present long listings of general-purpose simulations. Rather, I
point out the use of various techniques and convert these into rather
obvious programs. At least I hope that they are obvious — if they are not,
then I have fallen down on the job.

Background

Financial modelling is the first area that I consider and one in which most
users show interest at some time or another. Although expressed in a
variety of ways, most businesses and individuals want the same basic
questions answered about their finances.

The most popular question is: ‘How much money have I got now?’ Next
comes: ‘How much money will I have tomorrow?’ These two questions
tend to form the basis for the vast majority of financial models (and also
keep a lot of accountants very busy), although companies will talk about
assets rather than money.

There are, however, a few other questions which can be asked, especially
by those seeking to become healthy, wealthy, and wise. These typically are:
‘What happened to the money that I had yesterday?’, ‘How can I make the
most money tomorrow from that which I have today?’ and ‘How much
money has everybody else got, and what are they going to do with it?’ It is
these last few questions that often need some form of simulation to be
answered properly. The investigation of what will happen if alternative
possible courses of action are taken is, in principle, a very straightforward
problem. In fact, financial simulations often grow into very complex
programs when all factors are allowed for.

Some examples of real applications which are based on the questions
noted above are:

How much have I got? — Stock maintenance program
How much tomorrow? — Profit and loss projections
What happened to it? — Personal accounts

How can I make more? — Investment modelling

What about the others? — Stock Market models

The last two tend to require not only a very good understanding of the
system which is being modelled but also access to a very large amount of
reliable data. Think carefully before you decide to take the Stock Market
by storm with your Sinclair QL — some very clever people using some very
expensive hardware are already operating there and have found that their
simulations are mainly of use in aiding them to make their own decisions;

48

Chapter 6 Laughing All the Way to the Bank

the programs cannot usually be used very reliably for unaided prediction in
this complex environment.

Example

As my example in this chapter, I am going to look at the second question,
predicting future finances based on current assets and past performance.
The case that I have dug out of my case-book concerns the prediction of
monies held in various accounts belonging to a working person (not me, let
me hasten to add, but a friend of mine who wanted to visit a computer
exhibition in America), with allowance made for income from a fixed
source (the main employment) and from a second source, a part-time
business. Outgoings are also allowed for and broken down into major
types of expense. The simulation part of the program comes in when I
define the rules for predicting future figures from known historical data.
The basic approach that I outline here can equally well be used for the
analysis of company performance or the monitoring of any form of funds,
such as club assets.

Simulation development

This is one case which lends itself to development on a spreadsheet and thus
provides me with a chance to describe the potential use of the software
provided with the QL. But I am jumping the gun a little, am I not?

As I described in Chapter 4, we must first define the simulation
requirements. I shall of necessity keep this bit brief: when you come to
developing real simulations you will have to be more thorough. The system:
which we are going to simulate consists of the money possessed by a single
person, Penny Pound. The money is kept in a current account at her local
bank, National Vault Limited, a deposit account in a building society,
Humpty Securities, and as cash. The cash is almost incidental as Penny
keeps an average of about £10 in cash at all times. There is a little more to
the system than just the money, however, as we must also look at the ways
in which money enters and leaves the accounts and moves from one place
to another.

The month is May, Penny has just had a pay rise and each month
(calendar month rather than the often used four-week month) Penny is
paid £600, after tax and other deductions have been made, which is paid
directly into her bank. As a means of building up her savings, Penny has
arranged a standing order of £60 pounds a month from her bank to her
building society account. All major bills, such as electricity and phone
bills, are paid by cheque from the current account at the bank. Day-to-day
bills are paid in cash, which Penny withdraws from the bank as she needsiit.
Penny has, very conveniently, kept all her old cheque stubs and can thus

49

Introduction to Simulation Techniques on the Sinclair QL

say what she has paid, and to whom, over the last 16 months. I have made a
note of the most important figures below.

Is that all that we need to know? We must also note the important
changes in the past. Penny has just had a rise in pay — until last month she
was only getting £550 a month. She has also been doing some freelance
work and her income from this is given below: she expects this income
(whichis quoted after tax, etc.) to increase at about 10 per cent every month
for the next few months. Every year she takes out most of her savings from
the building society and goes on holiday. She wants to know what is likely
to happen to her money over the next six months and whether or not she
can go to an exhibition, costing a minimum of £950, in three months’ time
at Computaland in the USA.

Now we are getting a better idea of the simulation requirement and the
system to be simulated. The requirement is a prediction for each month for
the next six months, with a special test for three months’ time. The
predictions are w be based on monthly data which covers the past 16
months. There are a number of techniques for predicting values based on
historical data. We could plot the historical data and visually pick out a
trend. We could ‘fit’ a simple mathematical formula to the data and use
this. These techniques, and others, could all be attempted, but I’m going
for something a little simpler.

The value which we are going to predict for a given quantity is to be
based on the value for that quantity for 12 months ago, but modified by an
estimate of inflation. This estimate of inflation is based on a general
comparison of the previous month’s outgoings with those of twelve
months before. This may not sound too simple, but will become much
clearer when we get to setting up the spreadsheet.

Of course, I have already chosen the spreadsheet as the basic means of
setting up the simulation and have thus avoided having to select between
various options. Use of the spreadsheet gives a simple means of storing and
manipulating data. The predictions are quite straightforward, not
involving any decisions or alternative paths. The output requirements are
also very simple, being a minimum of a single figure (total money) for each
of six months plus one special figure for the middle of the six month period.
In fact, we shall actually be taking more interest than this in the output, but
I want to set up the simulation first.

I must assume that you know the basics of using a spreadsheet program
such as Abacus. If you don’t, then have a quick flip through the manual
now, or take a glance at one of the many descriptions available in books on
‘making the most of your micro’, or ask someone else to describe the basics
to you.

The following data has been supplied by Penny Pound and should be set
up in columns A to G of a blank spreadsheet. Use the titles given as column
headings in row one and the month numbers as references in column A.

50

Chapter 6 Laughing All the Way to the Bank

Figures give expenditure for a full month.

| A | B | ¢ | D | E | F | G |
1 RENT GASELEC CAR HOLIDAY PHONE MISC
2| FEB,A 148.00 0.00 58.00 200.00 0.00 261.00
3] MAR,A 148.00 51.00 0.00 0.00 0.0 312.00
4| APR,A 148.00 55.00 22.00 0.00 21.00 264.00
5| MAY,A 148.00 0.00 0.00 0.00 0.00 230.00
6| JUN,A 148.00 42.00 0.00 0.00 0.00 265.00
7| JUL,A 148.00 40.00 47.00 0.00 23.00 278.00
8| AUG,A 148.00 0.00 95.00 0.00 0.00 324.00
9| SEP,A 163.00 34.00 85.00 0.00 0.00 330.00
10| OCT,A 163.00 24.00 0.00 0.00 23.00 211.00
11 NOV,A 163.00 0.00 0.00 550.00 0.00 320.00
12| DEC,A 163.00 31.00 0.00 0.00 .0.00 278.00
13| JAN,B 163.00 22.00 44.00 0.00 25.00 256.00
14| FEB,B 163.00 0.00 0.00 0.00 0.00 300.00
15| MAR,B 163.00 56.00 0.00 0.00 0.00 289.00
16| APR,B 163.00 61.00 0.00 0.00 35.00 268.00
17| MAY,B 163.00 0.00 12.00 0.00 0.00 268.00

Note: Abacus can be set up to display from 40 to 80 characters across the
screen. I have not attempted to give a true representation of the Abacus
screen display. Depending on the mode that you use you will be able to
display a greater or lesser portion of the spreadsheet.

I suggest that before you start to enter data you set the default cell
display to two decimal places — press F3 U(nits) D(efault) M(onetary)
ENTER — and switch off the auto-calculate — press F3 D(esign) A(uto)
ENTER.

In addition to expenditure, we must also set down Penny’s income and
the money which remains in her bank and building society accounts. We
shall ignore cash; Penny keeps around £10 as cash, but this is a relatively
constant figure and can be excluded from this system. The relevant figures,
to be entered in columns H to K of the spreadsheet, are as follows:

| A | H | T | J | K |
1 INCOME, A INCOME,B BLDSOC ~ BANK
2| FEB,A 550.00 0.00 10.00 71.00
3] MAR,A 550.00 0.00 70.00 43.00
4] APR,A 550.00 0.00 130.00 70.00
5| MAY,A 550.00 0.00 190.00 84.00

51

Introduction to Simulation Techniques on the Sinclair QL

6] JUN,A 550.00 0.00 250.00 161.00
7 JUL,A 550.00 0.00 310.00 183.00
8] AUG,A 550.00 0.00 370.00 91.00
9| SEP,A 550.00 0.00 430.00 8.00
10| OCT,A 550.00 0.00 490.00 5.00
11| NOV,A 550.00 0.00 0.00 -35.00
12| DEC,A 550.00 0.00 60.00 14.00
13] JAN,B 550.00 0.00 120.00 54.00
14| FEB,B 550.00 35.00 180.00 25.00
15| MAR,B 550.00 50.00 240.00 113.00
16/ APR,B 550.00 56.00 300.00 172.00
17| MAY,B 600.00 64.00 360.00 249.00

So far, we have set up the data to be used in the simulation, but nothing
more. The next thing we need to do is to set up any modifications that may
be required to the raw data. (In case you were wondering, raw data is data
that has not been modified or analysed in any way. For some reason, which
you may be able to work out for yourself, it is unheard of for people to talk
of modified data as cooked data, it is more usual to refer to it as processed
data.) One of the things that we want to know is how much money Penny
actually has at the end of each month. This quantity is found simply by
adding the two account figures. We also need to estimate the inflation in
spending over the previous twelve months, based on actual expenditure,
which in turn requires that we find out, month by month, just what the
expenditure has been. We thus have three additional columns to add to the
spreadsheet: spending, inflation, and money. These will be set up in
columns L, M, and N respectively.

Spend is a simple sum of money out in any month. Move the cursor to L2
onthe spreadsheet and, using the ability of Abacus to refer to other cells on
the spreadsheet using row and column labels, enter the formula;

RENT.FEB,A + GASELEC.FEB,A + CAR,A + PHONE.FEB,A + MISC.FEB,A

Note that [have left the holiday expenditure out of the sum (which is why I
did not use the SUM() function). This is because we are going to use spend
to generate an inflation figure and the large expenditure on infrequent
holidays would play havoc with this figure.

The spend formula given above must be E(choed) down column L to row
17, in order to give the spend for each month.

Inflation is to be set in column M, but it can only be set where at least
twelve months of spend figures are available. We shall leave this blank for
the moment. Column N is to be the money column. The formula to enter in
cell N2 is:

52

Chapter6 Laughing All the Way to the Bank

BANK.FEB.A + BLDSOC.FEB.A

Again this must be E(choed) down the column. Enter X(ecute) to execute
the formulae. Columns L, M, and N should now look as fallows;

| | L | M | N |
1] SPEND INFLATN MONEY
2| FEB,A 467.00 81.00
3| MAR,A 467.00 113.00
4 APR,A 467.00 200.00
5| MAY,A 378.00 274.00
6/ JUN,A 455.00 411.00
7 JUL,A 536.00 493.00
8| AUG,A 567.00 461.00
9| SEP,A 612.00 438.00
10/ OCT,A 421.00 495.00
11] NOV,A 483.00 -35.00
12| DEC,A 472.00 74.00
13] JAN,B 510.00 174.00
14) FEB,B 463.00 205.00
15| MAR,B 508.00 353.00
16| APR,B 527.00 472.00
17| MAY,B 443.00 609.00

Now we can set up the simulation part of the spreadsheet. This means
setting up formulae which will predict future performance of the system
from stored data.

Extend column A downwards to give months JUN,B; JUL,B; AUG,B;
SEP,B; OCT,B; NOV,B. This will give predictions for the next six months
(remember, when I first set up this simulation, the current month was
May). Now we must enter the formulae, column by column, to fill rows 18
to 23.

First, rent. Enter;

RENT.MAY.B

into cell B18 and E(cho) down the column. This will keep the rent at a fixed
level.

The general formula we shall use for predicting unknown expenditure
for each month is;

Expenditure = Expenditure from 12 months before * inflation
calculated to the previous month

53

Introduction to Simulation Techniques on the Sinclair QL

For example, the precise formula to enter into cell C18 and E(cho) into all
cells to C23 is:

GASELEC.JUN,A*INFLATN.MAY.B

Similar formulae must be set up for columns C, D, F, and G.
Asforrent, the predicted valuesin columns E and H will remain constant.
Use the formula;

HOLIDAY.MAY.B

in cell E18 and E(cho) down to E23. Enter:

INCOME . A.MAY.B

in cell H18 and E(cho) down to H23.
Income B is predicted by Penny to rise at 10 per cent per month. Hence
the formula to enter at 118 is:

INCOME.B.MAY,B*1.1

This also must be E(choed) down the column.

Money in the building society account is added to (from the bank
account) by £60 per month, and is only removed if required for holidays.
Enter the following formula in cell J18 and E(cho) down to J23:

BLDSOC.MAY,B +60

The ordinary bank account is a little more complex. Money in is the income
figure from columns H and I. £60 goes to the building society.
Miscellaneous expenses are paid for, in general, in cash which Penny
withdraws as required from the account; hence the figure given in column
G is subtracted directly from the bank account. Other major outgoings are
paid by cheque. One point about cheques is that they take time to process.
In order to give you an idea of how to deal with this, I am assuming that
cheques written in one month are not actually cleared until the following
month. This is an exaggeration, of course, but is a simple rule to apply and
will do for this simulation. Perhaps you might like to think of other
approaches, for instance to back up the assumption that it takes an average
of six days to post and process a cheque.
Our formula for the bank account thus comes out as;

BANK.MAY,B + INCOME,A,JUN,B + INCOME,B,JUN,B-60-MISC.JUN,
B-RENT,MAY,B-GASELEC.MAY,B-CAR.MAY ,B-PHONE.MAY,B

54

Chapter 6 Laughing All the Way to the Bank

This should be entered into K18 and E(choed) to K23.

Columns L and N already have formulae set up, these merely need
extending to row 23,

The last column to fill is the inflation column. This must be calculated
from MAY,B to NOV,B. The formula is simple:

SPEND.MAY,B/SPEND.MAY A

is entered at M17 and E(choed) down to M23. Again, this is a gross simpli-
fication and there are other approaches which could be adopted which
would be more realistic and less prone to error, but much more complex to
implement. The major problem with the method I have adopted is that the
inflation figure can be distorted by any odd highs or lows in the data. Also,
recent trends in data are not identified using this approach. For example,
the most recent phone bill was unusually high, due, I suspect, to Penny’s
part-time job. Our method of prediction will not carry this high rate
forward.

Results
The simulation is more or less complete now. If you X(ecute) you should
get the following;

| A | B | ¢ | D [E | F | G |

1| RENT GASELEC CAR HOLIDAY PHONE MISC

2| JUN,B 163.00 49.22 0.00 0.00 0.00 310.57
3] JUL,B 163.00 45.96 54.00 0.00 26.43 319.42
4/ AUG,B 163.00 0.00 107.90 0.00 0.00 368.01
5| SEP,B 163.00 38.31 95.78 0.00 0.00 371.86
6] OCT,B 163.00¢ 26.23 0.00 0.00 25.14 230.63
7| NOV,B 163.00 0.00 0.00 0.00 0.00 338.25

| A | H | T | J | K |
1| INCOME A INCOMEB BLDSOC BANK
2| JUN,B 600.00 70.40 420.00 373.83
3] JUL,B 600.00 77.44 480.00 459.63
4 AUG,B 600.00 85.18 540.00 427.41
5| SEP,B 600.00 93.71 600.00 418.36
6| OCT,B 600.00 103.07 660.00 533.70
7| NOV,B 600.00 113.38 720.00 634.46

55

Introduction to Simulation Techniques on the Sinclair QL

| A | L | M | N |
1 SPEND INFLATN MONEY
2| JUN,B 522.79 1.15 793.83
3] JUL,B 608.81 1.14 939.63
4] AUG,B 638.92 1.13 967.41
5| SEP,B 668.95 1.09 1018.36
6| OCT,B 445.01 1.06 1193.70
7] NOV,B 501.25 1.04 1354.46

If you do not get this result, then check through your entries from the start.
Make sure that you have the spreadsheet set to calculate in row order (F3
D(esign) C ENTER).

Now we have our answer, Penny can just about afford to go to the USA
in August — or can she? We have modelled the system and predicted
forward for six months in steps of one month. The indications are that
Penny will have over £900 in August and will not suffer drastically in the
following months. However, in our haste to set up the simulation we have
overlooked a few vital points. These are as follows:

1) Penny’s rent is due to go up in September, probably by 10 per cent.
Enter RENT. AUG,B*1.1 in cell B21.

2) We have not actually allowed for the cost of the trip in August. Set cell
E20 to say 950. Modify the formulae in cells J20 and K20 to pay for the
trip, £540 from the building society account and £410 from the bank.

3) Although Penny can take paid leave from her full-time job, she will lose
her potential earnings from her part-time job, and will also lose some of
her increased earnings in the following months. In fact, by talking to
Penny I found out that she would lose all her money in August (enter
zero in cell 120) and her earnings in September would be 10 per cent up
on July (enter INCOME B,JUL,B*1.1 in cell 121).

Now X(ecute) again. Do you still think Penny can afford to go to the
USA? If she does, she will go £85 into the red in her bank account.

I’m not going to tell you what Penny finally decided to do (all the best
mystery stories leave the ending open) but you see how careful you must
be in setting up even a simple simulation and in making sure that all
relevant information is allowed for. You must constantly be checking
the workings of the simulation and the assumptions on which it is based.
If at any point the simulation gives you a marginal result, ie one which is
very close to a decision-making value, then be especially careful.

56

CHAPTER 7
Testing Testing Testing

Product development

TETTING
TOSTING
TESTING

R | (I

‘Illnl. |

| lll ll

o I'l'lt
—— A

" Simalabrory 5 it éy 7.
/mcm O tianinats

57

Introduction to Simulation Techniques on the Sinclair QL

My second practical chapter dives into the world of hardware develop-
ment.

Background

The potential roles for simulations in support of hardware development
are so many and so varied that there is little that I can meaningfully add to
my general comments in Chapters 2 and 3.

Most of my own experience has been concerned with the evaluation of
different hardware solutions to meet a given need. This involves creating a
simulation of the environment in which the hardware is to be used and then
using this to compare the different performances of possible designs using
the simulation. This form of simulation is usually developed at the initial
planning stage of a hardware programme. In parallel, a financial assess-
ment of the hardware designs will be made, possibly based on financial
simulations of the development and production operations and the
potential commercial market, which will lead to the selection of a preferred
design.

Development of hardware typically follows the pattern: research,
design, development, production, and update. Comparison of alternative
possible designs is generally completed during the research stage. The
design stage is based on the evolution of a detailed technical evaluation and
description of the chosen concept, often based on the use of computer-
aided design programs (CAD). The design process is based on the use of
theoretical calculations and the application of old, proven technologies
into new products. Use of computer assistance during the past few years
has lead to a considerable reduction in the time taken to achieve a detailed
design, a more thorough evaluation of the design prior to the manufacture
of prototypes, and savings in product weight without any reduction in
strength.

During the development stage, the designs are converted into hardware,
tested, improved, and evaluated against the original requirement. Reliabi-
lity assessment and prediction will identify problem areas and indicate
whether or not the product will be fully ready for production when
planned. Especially important during development is the setting up of the
production facility. This may mean just making adjustments to existing
machines, or creating new moulds and dies for casting work, or it may
mean building a new factory, ordering and buying new machinery,
employing and training staff, and so on. Obviously, it is vital to get this
planning, which may be extremely complex, done right, or large amounts
of money can be lost. Extensive use is made of project-planning computer
programs, such as critical-path analysis, and these programs are becoming
more and more sophisticated. At the heart of most of these is a simple
simulation of the sequencing of the project plan.

Less use is made of simulations once production is under way: Chapter 8

58

Chapter 7 Testing Testing Testing

looks at simulations for management information.

Updating the design may take place some time after the product has first
entered production. This may be to deal with some defect appearing after
production is under way, to reduce production costs, to improve perform-
ance, or simply to make the product look more modern. The updating
process is, in theory, very similar to the first design phases, with research,
design, development, and production. Computing requirements are also,
in principle, the same.

In summary, greater and greater emphasis is being placed on the use of
computers during development and many of these uses involve the simu-
lation of either the hardware under development, the system in which the
hardware is to be used, or the system which is to be used to make the
hardware. I titled this chapter ‘Testing Testing Testing’, because hardware
development has traditionally required considerable effort to be put into
prototype testing. The emphasis is gradually changing—perhaps I should
have called this chapter ‘Evaluating Evaluating Evaluating’.

Example

There are many examples that I could have chosen, most of these however
would have been too lengthy to include in a book of this size. The example
that I have chosen takes me back to my early simulation days. When I was
first learning to use computers I was also keenly interested in motor racing,
particularly go-kart racing and motor-cycle racing. Engine capacity
ranged from 100 to 500 cc (cubic centimeters), and the engines, usually two
strokes, were tuned to give maximum power outputs. Don’t worry if you
do not know much about engines, I shall shortly explain all you need to
know.

One of the interesting things about these small capacity engines is that,
once you start to look at them in detail, they turn out to be very simple
(often to keep weight to a minimum) and rather under-developed.
Advances in design have been rapid, but mainly because a large number of
people have been trying out different ideas; some are bound to work and
these are rapidly copied by all the manufacturers. It struck me that I could
use my A level physics knowledge to simulate part of the engine and thus
‘try out’ different ideas without having to spend huge amounts of time and
money testing hardware. (You may like to note that the Japanese motor-
cycle industry adopted a similar approach with some success.) I was parti-
cularly interested in simulating the exhaust system (a vital component
for racing engines — still under-developed) and the ignition system.

My example for this chapter is based on my early efforts to develop a
simple electronic ignition system for a 100 cc racing engine.

Simulation development
Piston engines work by using a piston moving in a cylinder to compress a

59

Introduction to Simulation Techniques on the Sinclair QL

mixture of air and fuel (in this case petrol); burning the mixture and thus
using the chemical energy present in the fuel to heat the air/fuel mixture
which in turn increases the pressure of the mixture; and using this high
pressure to push the piston back down the cylinder. It is the pressure acting
on the piston which does the work and provides power. Maximising the
power output of the engine depends principally on burning the air/fuel
mixture in such a way that the pressure achieved as the piston moves down
is controlled to produce useful work, whilst not overheating or overstress-
ing the piston and other engine parts.

A sparking plug (simply a screw-in plug which produces a high voltage
spark in the combustion chamber — where the air/fuel mixture is
compressed and burnt) is used to ignite the fuel, with the timing of the
spark set by the ignition system. If the spark is too early, the pressure rise
may force the piston back down the cylinder or may overheat the engine: if
too late, then some of the work potential of the burnt air/fuel mixture will
be lost. The fuel takes time to ignite (there is a timing delay, between the
spark and the mixture starting to burn, known as the ignition delay) and
the fuel takes time to burn, thus maximum pressure occurs some time after
the spark. As the engine speeds up, the spark must be set to occur earlier
and earlier to ensure that the peak pressure comes just after the piston has
reached its highest point in the cylinder and is on its downward, or power
stroke.

In its simplest form, and remember that racing engines are often very
simple, the ignition should automatically provide the correct ignition
advance as the engine accelerates through its speed range to give maximum
power. My simulation is of the compression, burning, and power-
producing expansion of the air/fuel mixture. The desired ignition
advance is found by gradually changing the simulated ignition setpoint
until a maximum power output is found. This process is repeated for
various engine speeds until a full picture is built up of the required ignition
characteristics.

I have defined the basic simulation requirement. In order to make the
simulation suitably short for inclusion in this book, I have kept the simu-
lation as simple as possible, as explained below. The technique to be
adopted for the simulation is obtained by a process of elimination. I cannot
use a spreadsheet program as I did in the last chapter, as the detail required
would rapidly use up the limited space available on a spreadsheet. Also, the
resulting simulation would not be versatile enough to permit future
development of the simulation, and the finding of optimum ignition
advance would probably have to be done by hand. Thus a special program
must be written.

There is no decision-making required within the simulation, as the
air/fuel mixture can be taken to follow known laws of fluid dynamics. As
the mixture is compressed, burned, and expanded we can uniquely define

60

Chapter 7 Testing Testing Testing

‘uonisoq uo)sid pue dsuy Jeysyuesr) -, aandiyg

*(00L2) .AOOQHV
suetped I.'p = suetped pl € =
jueao jo a18uy jueao jo ai13uy

*a104£d

uo3std jo dogy

NN

Jaquey)
uoT3sSnNquo)

*(006)
suetped (G°T =
juedad jo ayduy

*(00) suerpea g =
yuead jo or3uy
*a104ho

uoj3std jo wojzjod

O

|

ajodls
uo3std

3Jeysiue)

poJ-uo)

uo3sTd

8n1d
Buryaeds

61

Introduction to Simulation Techniques on the Sinclair QL

its state at all times — there is no question of assigning probabilities to
alternative possible states. Thus the techniques available for handling pro-
babilities, such as Monte Carlo, Markov chain, deterministic and special
purpose, cannot be used. We could possibly use a model which splits up the
engine cycle into a small number of phases — eg a compression phase, a
burning phase, an expansion phase, etc. — with calculations giving the
engine state at the end of each phase depending on the conditions at the
start of each phase. This is essentially the approach adopted for hand cal-
culations but is not sufficiently accurate for our needs.

The only approach which I think merits use is to base the simulation on a
model of the air/fuel mixture and to step through the engine cycle from
start to finish. Here we do have a choice, however; we can step through the
cycle using a constant time-step or we can use the rotation of the
crankshaft. (See Figure 7. 1 for the relationship between the piston and the
crankshaft. The crankshaft is used to convert the linear motion of the
piston into rotational motion required for driving wheels.) It is much
simpler to base the model on crankshaft position than on time, hence I
have chosen to base the model steps on the rotation of the crankshaft.

As I mentioned above, I have had to use a very much simplified model of
an engine, and have had to adopt a very simple model of the behaviour of
the air/fuel mixture. Those of you who are familiar with engines and fluid
thermodynamics will probably realise that the representation, as it stands,
can only be used to give a very rough guide to engine performance; the
model can be extended and improved quite easily, however.

The model steps through a single engine cycle consisting of compression
of the air/fuel mixture, ignition and burning of the mixture, and expan-
sion of the burnt mixture. Other parts of a real engine cycle — the burnt
mixture and bringing in a fresh charge of air and fuel — are ignored. A
total is calculated for the work output of the engine, which is obtained by
continuously calculating the force acting on the piston, multiplied by the
distance moved by the piston from one crankshaft position to the next. As
the air/fuel mixture is being compressed, this work term will be negative,
ie the piston must supply work to compress the mixture. As the hot burnt
gas expands, the work is positive; work is done on the piston. The total
work available at the end of the cycle indicates, when multiplied by the
engine speed, the power produced by the engine.

I am not going to explain the program development in any great detail.
Figure 7. 2 gives a flowchart for the program (this is the next item to
produce once the simulation technique has been selected) and below I give
a brief description of each of the program routines. Use these and work
through the program listing to see how I have developed the program: you
should have no real difficulty. Program variables are described at the end
of the listing.

62

Chapter7 Testing Testing Testing

‘ START)

INITIAL

Set initial values.

FINDTIME

Set the advance and values for
each engine cycle (LOOPSETUP).
Cycle for crank angle
and calculate total
work done by the engine.
Repeat until maximum work
is achieved for the engine
speed, and store the optimum
value for the advance.

Increase engine speed

Is
Engine speed > 10,000
?

Yes

PLOT

Plot optimum ignition
advance, in terms of angle
of crank, for engine speeds

of 1000 - 10,000 rpm.

‘ STOP ’

Figure 7.2: Flowchart for the Program ‘Ignition’.

63

Introduction to Simulation Techniques on the Sinclair QL

90 : ADVANCE

: (DEGREES)
60 :
* % % B R
: LR R N X
30: PR
. * % *
: LR X 2K X N J
: * %
. * % *
+0:
-0:
_15'.

:REVS 2000 4000 6000 8000 10000

Figure 7.3: Output Produced by Program ‘Ignition’.

Results

The output from the program (Figure 7.3) is very simple. It gives the
desired ignition advance, in terms of the crankshaft angle before the piston
reaches the top of the cylinder, for engine speeds from 1,000 to 10,000
revolutions per minute.

Basically this is all I need in order to begin to design a full electronic
ignition system. In practice, however, I would want to improve the simu-
lation considerably before using the results, and I would want to start
investigating factors such as what happens when the air inlet temperature
varies (hot and cold weather), what happens if the engine compression
ratio is changed, what happens if the ratio of fuel to air is changed, and so
on, before deciding what I want from the ignition system.

Program description
Figure 7. 2 presents an overall flowchart for the program ‘Ignition’.
The routines used in the program have the following functions:

PROCedure INITIAL: Sets the initial values of program variables.

PROCedure FINDTIME: Searches for the optimum ignition advance for
each engine speed. This is done by setting the advance, rotating the

64

Chapter7 Testing Testing Testing

crankshaft and working out the total work output, and then modifying the
ignition advance until an optimum is found. At first the ignition setting is
reduced. If a drop in work is recorded then the ignition is progressively
advanced and the optimum point is taken as the point just before the fall in
work is indicated.

PROCedure LOOPSETUP: Sets variables for each change of advance,
setting the record of old values from the current values, and increasing or
decreasing the advance as required.

FuNction newvol: Calculates the volume of air/fuel mixture for the next
position of the crankshaft.

FuNction pressure: Calculates engine internal pressure at a given
crankshaft angle.

FuNction burnheat: Calculates the temperature rise in one cycle due to the
burning of fuel.

FuNction volindex: Calculates the temperature change index in one cycle
due to a change in volume of the air/fuel mixture.

FuNction rate: Calculates the rate of burning of the fuel as a function of
the air/fuel density (density = 1/volume).

FuNction burnrate: Calculates the actual energy supplied by burning the
fuel in a single program cycle.

FuNction loopwork: Calculates the work done in the engine during one
program cycle.

Program listing

100 REMark IGNITION

110 MODE 256

120 CSI1ZE 2,0

130 INITIAL

140 REPeat SPEEDLOOP

150 FINDTIME

160 OADV(INT(REVS/1000+.5))=0LDADV
170 REVS=REVS+1000

180 IF REVS>10000 THEN EXIT SPEEDLOO
P

190 END REPeat SPEEDLOOP

65

Introduction to Simulation Techniques on the Sinclair QL

200 PLOT
210 STOP

220 DEFine PROCedure INITIAL
230 DIM OADV(10)
240 CAL=500000

250 CONSTA=.1075
260 CONSTB=4.135E-5
270 PINLET=101300
280 TINLET=273

290 VMOLE=2.24E-2
300 R=8.314

310 KENG=35

320 GAMMA=1.3

330 DELAY=3E-4

340 KRATE=2.5E-3
350 REVS=1000

360 STROKE=5.38E-2
370 BORE=4.82E-2
380 CAP=STROKE*PIi|*BORE*BORE/4
390 ROD=.1

400 VCOMB=9.5E-6
410 OADV(0)=2

420 WORK=0

430 END DEFine

440 DEFine PROCedure FINDTIME

450 LOCal a.b

460 ADV=OADV(INT(REVS/1000-.5))

470 INDICATE=0

480 REPeat TIMING

490 LOOPSETUP

500 CLS:PRINT "OPTIMISING IGNITION

ADVANCE” : PRINT "REVS = " ;REVS;” ADVAN
CE = ";ADV:;” DEGREES”

510 REPeat WORKLOOP

520 LOOPANG=5

530 SELect CRANK=140 7O 218:LOOPAN
G=2

540 CRANK=CRANK+LOOPANG

550 IF CRANK>360 THEN EXIT WORKLOO
P

560 voLO=VvOL1

570 TEMPO=TEMP1

580 PRESS0=PRESS1

590 VOL1=newvol

600 TEMP1=(TEMPO+burnheat)*volinde
x

610 PRESS1=pressure

620 WORK=WORK+ loopwork

630 IF CRANK< (BADV+DELAY*REVS*360/
60) THEN

640 BURN=0

66

Chapter7 Testing Testing Testing

650 ELSE

660 BURN=burnrate
670 END IF

680 RA=RA-BURN

690 END REPeat WORKLOOP
700 b=INDICATE
710 SELect ON INDICATE

720 ON INDICATE=0

730 b=1

740 ON INDICATE=1

750 IF WORK>OLDWORK THEN
760 b=2

770 ELSE

780 b=3

790 END IF

800 ON INDICATE=2 TO 3
810 IF WORK<OLDWORK THEN RETurn
820 END SELect

830 INDICATE=b

840 END REPeat TIMING
850 END DEFine

860 DEFine PROCedure LOOPSETUP
870 CRANK=0

880 BURN=0

890 VOL1=CAP+VCOMB

900 TEMP1=TINLET

910 PRESS1=PINLET

920 OLDWORK=WORK

930 WORK=0

940 OLDADV=ADV

950 DADV=5

960 IF INDICATE=3 THEN

970 SELect ADV=-40 TO 38:DADV=2
980 ELSE

990 SELect ADV=-38 TO 40:DADV=2
1000 END IF

1010 SELect ON INDICATE

1020 ON INDICATE=1 TO 2

1030 ADV=ADV-DADV
1040 ON INDICATE=3
1050 ADV=ADV+DADV

1060 END SELect
1070 BADV=180-ADV
1080 RA=CAL*CAP
1090 END DEFine

1100 DEFine FuNction newvol
1110 LOCal a,b

1120 b=CRANK*2*P|1/360

1130 a=SQRT(ROD*ROD-(STROKE/2*SIN(b)
)"2)-STROKE/2*COS(b)-(ROD-STROKE/2)
1140 RETurn (CAP+VCOMB-(PI*BORE*BORE/

67

Introduction to Simulation Techniques on the Sinclair QL

4)*a)

1150 END DEFine

1160 DEFine FuNction pressure

1170 LOCal v

1180 v=VOL1*VMOLE/(CAP+VCOMB)

1190 RETurn R*TEMP1/(v-CONSTB)-CONST

A/(v*v)
1200 END DEFine

1210 DEFine FuNction burnheat
1220 RETurn KENG*BURN
1230 END DEFine

1240 DEFine FuNction volindex
1250 RETurn (VOLO/VOL1)" (GAMMA-1)
1260 END DEFine

1270 DEFine FuNction rate

1280 RETurn KRATE*CAL*CAP*LOOPANG/ (R
EVS*VOL1)

1290 END DEFine

1300 DEFine FuNction burnrate
1310 IF RA=0 THEN RETurn 0

1320 IF RA>rate THEN RETurn rate
1330 RETurn RA

1340 END DEFine

1350 DEFine FuNction loopwork

1360 RETurn (PRESSO0+PRESS1)/2*(VOL1-
voLo)

1370 END DEFine

1380 DEFine PROCedure PLOT
1390 LOCal a,b,c,n,q,.p$

1400 CLS
1410 PRINT ” 90:ADVANCE"”
1420 PRINT ”~ : (DEGREES) "

1430 FOR n=0 TO 16
1440 SELect ON n

1450 ON n=3

1460 PRINT ” 60" ;
1470 ON n=8

1480 PRINT ” 307";
1490 ON n=13

1500 UNDER 1:PRINT ” +0”";
1510 ON n=14

1520 PRINT ” -0";
1530 ON n=16

1540 PRINT "-186";
1550 ON n=REMAINDER
1560 PRINT ” "

1570 END SElLect
1580 PRINT ~: "
1590 FOR q=1 TO 10

68

Chapter7 Testing Testing Testing

1600 a=72-6*n

1610 b=a+5

1620 c=0ADVI(q)+.5

1630 SELect c=a TO b:PRINT "#**=*".
1640 SELect ¢c=-25 TO a-1:PRINT ”~
1650 SELect c=b+1 TO 73:PRINT ~

1660 END FOR q

1670 SELect n=13:UNDER 0

1680 PRINT

1690 END FOR n

1700 PRINT ”~ :REVS 2000 4000 600
0 8000 10000”

1710 END DEFine

1720 REMark VARIABLES LIST

1730 REMark a,b=TEMPORARY VARIABLES
1740 REMark ADV=IGNITION TIMING ANGLE
BEFORE TOP OF PISTON CYCLE

1750 REMark BADV=IGNITION TIMING ANGL
E AFTER BOTTOM OF PISTON CYCLE

1760 REMark BORE=ENGINE BORE

1770 REMark BURN=RATE OF INCREASE |IN
GAS TEMP BASED ON RATE OF FUEL BURN
1780 REMark CAL=CALORIFIC DENSITY OF
AIR/FUEL MIXTURE AT INLET CONDITIONS
1790 REMark CAP=ENGINE CAPACITY

1800 REMark CONSTA=CONSTANT IN VAN DE
R WAALS EQUATION

1810 REMark CONSTB=CONSTANT IN VAN DE
R WAALS EQUATION

1820 REMark CRANK=ANGLE OF CRANK

1830 REMark DADV=DELTA ADVANCE

1840 REMark DELAY=IGNITION DELAY

1850 REMark GAMMA=RATIO OF SPECIFIC H
EATS

1860 REMark INDICATE=INDICATOR 0-FIRS
T TIME ROUND FINDTIME LOOP1-SECOND T
IME ROUND LOOP 2-CONTINUE REDUCING AD
VANCE 3-CONTINUE INCREASING ADVANCE
1870 REMark KENG=CONSTANT RELATING TE
MP RISE TO ENERGY FROM FUEL

1880 REMark KRATE=CONSTANT

1890 REMark LOOPANG=ANGLE CRANK MOVES
THROUGH IN ONE INCREMENT

1900 REMark OADV(1 -> 10)=0PTIMUM ADV
ANCE AT REVS

1910 REMark OLDADV=LAST VALUE OF ADVA
NCE

1920 REMark OLDWORK=LAST VALUE OF WOR
K

1930 REMark PINLET=START PRESSURE

69

Introduction to Simulation Techniques on the Sinclair QL

1940 REMark
1950 REMark
1960 REMark
1970 REMark
TO BE BURNT
1980 REMark
1990 REMark
2000 REMark
2010 REMark
2020 REMark
2030 REMark
2040 REMark
N CHAMBER
2050 REMark
AT STP

2060 REMark
2070 REMark
2080 REMark

70

PRESS0=0LD GAS PRESSURE
PRESS1=NEW GAS PRESSURE
R=UNIVERSAL GAS CONSTANT
RA=REMAINDER OF AIR/FUEL

REVS=ENGINE SPEED RPM
ROD=LENGTH OF CON ROD
STROKE=ENGINE STROKE
TEMP0=0LD GAS TEMPERATURE
TEMP1=NEW GAS TEMPERATURE
v=LOCAL VARIABLE
VCOMB=VOLUME OF COMBUSTIO

VMOLE=VOLUME OF ONE MOLE
VOLO0=VOLUME OF GAS OLD

VOL1=VOLUME OF GAS NEW
WORK=WORK DONE

CHAPTER 8
What We Want is Information

What do you want to know?

71

Introduction to Simulation Techniques on the Sinclair QL

There is a significant role for simulations in the provision of informa-
tion. The bulk of such information applications are in the area of project
planning and management support. This chapter considers the use of
simulations in this role.

Background

It is well recognised that the information business is big business. News-
papers, television, publishing, reporting: these represent the public side of
abusiness that has continued to grow at a sustained high rate for the past 50
years. There is another, less well known, aspect which has been highlighted
recently by the introduction of small computers into business. This is the
provision of information services for management.

The management of modern companies is not usually based on the old
idea of a single boss or small board making many day-to-day decisions and
simply handing down the results of these decisions as actions to be carried
out by employees. Such companies do still exist but tend to be small or in
financial difficulties. In order to respond flexibly to the demands of a
changing world, it is necessary for a larger proportion of any company to
have a direct understanding of management aims and to have a responsi-
bility for making management decisions. This approach can only work if
good communications exist and information systems are built up.

Computer systems often provide the means for building up information
facilities. This does not, however, mean that there is an important role for
simulations. Requirements vary froin company to company and different
management groups work in different ways. Various financial and
commercial models may be used but are not common. Representations of
the internal workings of a company are becoming popular, usually to keep
track of manpower and stock, but few of these use simulation techniques
as yet.

The major area of interest for the implementation of simulations is cur-
rently in project management. This involves the long-term planning of
programmes of work and the implementation of such plans on a day-to-
day basis. In this application, the system being simulated is the project
itself and the techniques used for the simulation range from simple critical-
path analyses to highly sophisticated resource-optimisation programs.

Example

My example for this chapter is a simple project planning task to be carried
out using a general-purpose program. The program is a basic critical-path
analysis program which builds up a model of the whole project, identifies
those parts of the project which are most important, and estimates an over-
all manpower requirement

72

Chapter8 What We Want is Information

I could have chosen from a number of everyday examples for this
chapter, including preparing for a party, a year plan for a garden, writing a
book, or re-decorating a kitchen. Almost anything which requires forward
planning in fact. It is more usual, however, to apply critical-path analysis
to business problems and I have selected a simple manufacturing process as
my example.

Lookitthat Ltd. manufacture kites. The company is small (normally no
more than six employees, two of which are part-time) but devotes a high
proportion of its effort to the development of new designs. Before going
into full production with a new kite design, Lookitthat Ltd. usually pre-
pares a special batch of twenty kites in order to test out production
methods, to give them a small stock to show their retailers, and for use as
test models. Such small batches are often used by manufacturers and are
known as pre-production prototypes.

Two people are available to make the kites and both can complete any of
the tasks required. Figure 8.1 gives a list of the tasks. What we want to
know is: how long will the manufacture take, which are the important tasks
(the critical-path), and how much of the available effort is actually used.

TASK TITLE OF TASK NO OF TIME MANPOWER PRECEDING TASKS
(20 CHARACTERS) STEPS REQUIREMENT TO BE COMPLETED
A Cut material 7 2 —
B Stitch material 13 1 A
C Cut struts 4 1 —
D Cut tails 2 1 —
E Wind tails 2 1
F Cut control
strings 1 1 —
G Wind control
strings 2 1 F
H Fold kites 3 2 B
I Collect
components 4 1 HGEC
J Package 3 2 I

No of tasks = 10
Unit of time = 15 minutes
Total manpower available =2

Figure 8.1: List of Tasks Required to Manufacture 20 Pre-production Prototypes
for Lookitthat Ltd.

Simulation development

We are going to use a general-purpose program, so we will not go through
the full selection technique in this case. What I shall do however is describe
the program itself, how to use it, and how it might be extended.

73

Introduction to Simulation Techniques on the Sinclair QL

The program ‘Critical’ takes information on a number of tasks and
works out a plan for completing the tasks within a given manpower limita-
tion. Output consists of the plan itself, the actual manpower requirement,
and an indication of those tasks which are critical to complete the planned
work on time. Any delays occurring on one of these critical tasks will result
in a delay in the project completion time.

Several basic approaches to the writing of a critical-path model are pos-
sible. The differences are principally concerned with the way in which the
project plan is built up and also the control over this process desired by the
user. Tasks may be given different relative priorities, or particular start-
dates. Resources other than manpower may be added into the calculation,
which must be kept within pre-set limits. It may be required to smooth out
the use of certain resources, including manpower, as much as possible.
Another common requirement is to build in an allowance for problems and
delays and to have the program indicate just how sensitive the project plan
is to such things.

Our program is a basic one, however, albeit with a capability for exten-
sion. The core of the program is a routine which builds up the project plan.
This is achieved by initially considering all tasks, discounting those which
cannot be commenced yet as other tasks on which they are dependent are
still to be completed, and selecting the task which is of the longest duration
from those which can be started within the manpower currently available.
The principle behind selecting the longest-duration task is that such a task
is most likely to be on the critical-path and thus should not be delayed. A
more sophisticated approach might analyse the forward dependency of
tasks, ie establish which tasks in the future will be dependent on current
tasks, and, using this information, derive a relative priority for tasks. As I
have already indicated, though, this is a basic program lacking many of the
possible sophistications. If spare effort is available then additional tasks
may be selected, on the same basis of priority given to long duration.

The duration of tasks is input as a multiple of some fixed base-unit,
which will be 15 minutes in our example. In building up the project plan,
the program steps through the project using the base-unit-of-time. This
time unit is also used to display the completed project plan. The display
shows all of the input tasks and their relative positions in the plan, and
indicates if they are on the critical-path by marking their duration with aC.
Tasks not on the critical-path are marked with *.

Results
Figure 8.2 is the output provided by the critical-path program.

Tasks A, B, H, I, and J provide the critical-path for this particular pro-
ject. A total time of 7. 5 hours is indicated for the production test run, just
right for a full day’s work. Also, the utilisation (the proportion of time for

74

Chapter8 What We Want is Information

which the manpower available is actually used) is quite high, and little
benefit can be gained from playing around with the plan.

TASK (PAGE 1;0 TO 450 MINUTES)

A:CCCCcCCC

B: cccccceccecceccccecce

c . LR R N

D: *

E: *

F: *

G: *

H: CCC

|: CCcCC

J: CcCcC

SCALE IS ONE CHARACTER =15 MINUTES
PROJECT LENGTH =450 MINUTES
MANPOWER UTILISATION =.9x 2

Figure 8.2: Production Plan Critical-Path Analysis.

Note that Task I, collecting together the components in preparation for
final packaging, is marked as a single task dependent on the completion of
all manufacturing tasks. In reality, of course, this task could be spread out
and time saved. This task should really be broken down into sub-tasks.

Program description and use

Figure 8.3 presents an overall flowchart for the program ‘Critical’.
Definitions of the variables used in the program are given in REMark

statements at the end of the progam listing. The routines used in the pro-

gram have the following functions.

PROCedure INITIAL: Sets up dimension statements and initialises
variables.

PROCedure DATAIN: Inputs data on the project, including how many
tasks there are, the time-step to be used for the project plan, total man-
power available, the title of each task along with task duration and man-
power requirement. Initial data on each task is also set.

PROCedure PLAN: Steps through the project plan one time-step at a time
and gradually extends the project plan. Tasks are started as early as pos-
sible within the manpower available.

FuNction testend: Tests for the completion of the project plan. Returns a
value of 0 if so.

75

Introduction to Simulation Techniques on the Sinclair QL

76

(START)

INITIAL

Dimension arrays.

DATATIN

Requests input data
and sets initial data
for each task.

PLAN

Cycles in time-steps
and calls FINDTASK if
there is any free
manpower available.

ONPATH

Cycles backwards from the
end of the plan and tests
if each task is critical.

RESULTS

Prints either the project
plan or task list to
screen depending on

input request.

(STOP)

Figure 8.3: Flowchart for the Program ‘Critical’.

Chapter8 What We Want is Information

PROCedure REVISE: At the start of a new project time-step, this routine
checks to see if tasks previously in progress have ended, and marks them as
completed, using the indicator variable I(n), if so. The routine then checks
all the tasks which are dependent on the completion of previous tasks and
determines whether or not these can now be started.

FuNction effort: Returns a total manpower figure for tasks in progress.

PROCedure FINDTASK: If some manpower is available, then a new task
is selected (longest duration given priority) from those tasks remaining.

PROCedure ONPATH: This takes a completed plan and works back-
wards through it, considering each task in turn. For each task, a check is
made for other dependent tasks starting immediately after the current task
ends. If no such dependent task exists and manpower is available, the task
is moved on one time-step. This process is repeated until the task can be
moved no further. All tasks are tested in this way. Those which cannot be
moved lie on the critical-path and I(n) is set to 4.

FuNction deffort: Returns a total estimated manpower requirement for all
tasks assuming latest possible start-time.

PROCedure RESULTS: This prints the results to screen. The user can
choose between a listing of the project tasks or a diagram of the project
plan itself. If the project plan is too long to be shown on a single screen,
then several ‘pages’ are displayed.

Program use is relatively straightforward. The program works in a linear
fashiog, taking a full set of input, producing a project plan, and providing
a set of results.

To run the example problem, simply enter the data provided in Figure 8.
1. Several minutes are required to run the complete program.

Program improvements
‘Critical’ obviously has much room for improvement. As it stands, the
program is not very ‘user friendly’; the raw data is not stored on microdrive
and cannot be modified once entered, mistakes on entering data can cause
the program to stop with an error message, the linear data entry used does
not encourage manipulation of the raw data to answer ‘what-if?’ type
questions, hardcopy of the input data and the resultant project plan is not
available, and the limit of 15 tasks (chosen to simplify the PROCedure
RESULTS) restricts practical applications.

Replacing the current main program with a menu-driven program could
provide a means of providing additional facilities. Defined processes for

77

Introduction to Simulation Techniques on the Sinclair QL

microdrive and printer operations and for updating data could easily be
added.

Also, notice how I have included a variable A(1,n) which stores the start-
ing time of a task. This is currently calculated as part of the project plann-
ing process. It could equally well be input by the user, thus giving more
control over the project plan.

A final facility which I think it would be useful to add is a means of
defining a relative priority of tasks. This would force, or, encourage
(depending on how the facility is implemented) the program to give some
tasks priority over others.

The addition of the facilities noted above would allow the user to enter
data in a simple form, produce a first project plan, and modify the plan as
desired to suit requirements.

Program listing

100 REMark CRITICAL
110 MODE 256

120 CSIZE 2,0

130 INITIAL

140 DATAIN

150 PLAN

160 ONPATH

170 RESULTS

180 STOP

190 DEFine PROCedure INITIAL
200 DIM 1(15)

210 DIM A(4,15)

220 DIM A$(2,15,20)

230 DIM 0$(15)

240 O0%=""

250 Us$=""

260 END DEFine

270 DEFine PROCedure DATAIN

280 LOCal b,m,n,b$

290 CLS:INPUT "HOW MANY TASKS ARE TH
ERE?” ; TOTAL

300 REPeat TIMEIN

310 CLS:PRINT “"DO YOU WANT TO PLAN
IN”

320 INPUT “"(D)ays, (H)ours, OR (M)i
nutes?”;b$

330 b=CODE(b$)

340 SELect ON b

350 ON b=68
360 U$="DAYS"”
370 EXIT TIMEIN

78

Chapter8 What We Want is Information

380 ON b=72

390 U$="HOURS"
400 EXIT TIMEIN
410 ON b=77

420 U$="MINUTES"
430 EXIT TIMEIN

4490 END SElLect

450 END REPeat TIMEIN

460 CLS:PRINT "HOW MANY “;U$;

470 INPUT ” IN ONE TIME-STEP?” ; LENGT
H

480 CLS: INPUT "WHAT IS THE MANPOWER
AVAILABLE?"” ; MANPOWER

490 FOR n=1 TO TOTAL

500 CLS:PRINT "INPUT TITLE OF TASK
“;CHR$(n+64)

510 PRINT “"(UP TO 20 CHARACTERS)”
520 INPUT A$(1,.n)

530 PRINT:PRINT "HOW MANY TIME-STEP
S OF ";LENGTH;” ":;U$

540 PRINT "1S TASK ”“;CHR$(n+64) ;" ?

550 INPUT A(2,n)

560 PRINT:PRINT “WHAT IS THE MANPOW
ER REQUIREMENT”

570 PRINT "FOR TASK ”“;:;CHR$(n+64) ;"
?Il;

580 INPUT A(3.n)

590 REPeat DEPEND

600 PRINT:PRINT “"WHAT TASKS IS TAS
K ";CHR$(n+64);” DEPENDENT UPON?”

610 INPUT “(INPUT STRING OF LETTER

S THEN ENTER)” ,A$(2,n)

620 b=LEN(A$(2,n))

630 IF b>0 THEN

640 FOR m=1 TO b

650 IF CODE(A$(2,n,m))<65 OR COD

E(A$(2,.,n,m))>64+TOTAL THEN EXIT m
660 NEXT m

670 EXIT DEPEND
680 END FOR m
690 ELSE

700 EXIT DEPEND
710 END IF

720 END REPeat DEPEND
730 A(4,n)=0

740 A{1,n)=0

750 1{n)=0

760 END FOR n

770 END DEFine

780 DEFine PROCedure PLAN
790 CLS:PRINT "PLANNING”

79

Introduction to Simulation Techniques on the Sinclair QL

800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
TIME
1110
1120
1130
1140
1150
1160
1170
1180

UTIL=0
TIME=-1
REPeat PLAN1
TIME=TIME+1
REVISE
IF testend=0 THEN EXIT PLAN1
REPeat STARTTASK
MFREE=MANPOWER-effort
IF MFREE=0 THEN
EXIT STARTTASK
ELSE
FINDTASK
IF T=0 THEN EXIT STARTTASK
END IF
END REPeat STARTTASK
UTIL=UTIL+ (MANPOWER-MFREE)
END REPeat PLAN1
PLANEND=TIME-1
UTIL=UTIL/ (MANPOWER* (PLANEND+1))

END DEFine

DEFine FuNction testend
LOCal n
FOR n=1 TO TOTAL
IF I({n)<>3 THEN RETurn 1
END FOR n
RETurn O
END DEFine
DEFine PROCedure REVISE
LOCal k,m,n,p

FOR n=1 TO TOTAL
IF 1(n)=2 AND A(1.n)+A(2,n)-1<
THEN 1(n)=3
END FOR n
FOR n=1 TO TOTAL
IF I1{n)=0 THEN
k=1
m=0
REPeat DEPENDS
m=m+1

IF LEN(A$(2,n))=0 THEN k=1:E

XIT DEPENDS

1190 IF m>DLEN(A$(2,n)) THEN EXIT
DEPENDS

1200 p=CODE(A$(2,n,m))

1210 IF 1(p-64)<>3 THEN k=0
1220 END REPeat DEPENDS

1230 I{n)=k

1240 END IF

1250 END FOR n

1260 END DEFine

1270 DEFine FuNction effort
1280 LOCal m,n

80

1290
1300
1310
1320
1330
1340

1350
1360
1370
1380
1390

Chapter8 What We Want is Information

m=0
FOR n=1 7O TOTAL

IF 1I{n)=2 THEN m=m+A(3,n)

END FOR n
RETurn m
END DEFine

DEFine PROCedure FINDTASK
LOCal n,m,p
p=0:m=0:T=0
FOR n=1 TO TOTAL

IF 1{(n)=1 AND A(3,n)<=MFREE AN

D A(2,n)>m THEN

1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500

1510
1520
1530
H"
1540
1550
1560
1570
1580
1590
1600
RCH
1610
1620
1630
1640

E_TASK

1650
1660

m=A(2,n)
pP=n

T=1

END IF

END FOR n
IF p<>0 THEN

I(p)=2
A(1,p)=TIME
05$=-0$8CHRS$(p+64)

END |IF
END DEFine

DEFine PROCedure ONPATH
LOCal m,n,p.,q
CLS:PRINT "FINDING CRITICAL PAT

FOR n=1 TO TOTAL

A(4,n)=A(1,n)

END FOR n
m=TOTAL+1
REPeat BACKWARDS_SEARCH

m=m-1
IF m=0 THEN EXIT BACKWARDS_SEA

n=CODE(O$(m))-64
REPeat MOVE_TASK
TIME=A(4,n)+A(2,n)

IF TIME>PLANEND THEN EXIT MOV

FOR p=1 TO TOTAL
IF A(4,p)=TIME AND LEN(A$(2,

p))>0 THEN

1670
1680

FOR gq=1 TO LEN(A$(2,p))
IF CODE(A$(2,p.q))=n+64 TH

EN EXIT MOVE_TASK

1690
1700
1710
1720
1730

END FOR gq
END IF
END FOR p
MFREE=MANPOWER-deffort
IF A(3,n)>=MFREE THEN A(4,n)-=

81

Introduction to Simulation Techniques on the Sinclair QL

A(4,n)+1

1740 END REPeat MOVE_TASK

1750 END REPeat BACKWARDS_SEARCH
1760 FOR n=1 TO TOTAL

1770 IF A(1,n)=A(4,n) THEN I(n)=4
1780 END FOR n

1790 END DEFine

1800 DEFine FuNction deffort

1810 LOCal m,n

1820 m=0

1830 FOR n=1 TO TOTAL

1840 SELect TIME=A(4,n) TO A(4.,.n)+A
(2,n)-1:m=m+A(3,n)

1850 END FOR n

1860 RETurn m

1870 END DEFine

1880 DEFine PROCedure RESULTS

1890 LOCal b$.c$.e$. m.n,p,q.r,s,v,w
1900 CLS

1910 REPeat RESLOOP

1920 CLS: INPUT "ENTER P FOR PROJECT
PLAN, T FOR LIST OF TASKS ”“:;bs$

1930 v=CODE (b$)

1940 SELect ON v

1950 ON v=80

1960 CLS

1970 p=0

1980 REPeat PLANPAGE

1990 p=p+1

2000 m=30*(p-1)

2010 q=m+29

2020 IF q>PLANEND THEN q=PLANEND

2030 CLS

2040 PRINT "TASK (PAGE ";p:". "~
:m*LENGTH;” TO “;(q+1)*LENGTH:;” ”;U$;
II)II

2050 PRINT

2060 FOR n=1 TO TOTAL

2070 e$=" "8CHR$(n+64)&":"

2080 s=A(1,n)+A(2,n)-1

2090 w=A(1,n)

2100 SELect ON w

2110 ON w=0 TO m

2120 r=0

2130 ON w=m+1 TO q

2140 r=w-m

2150 ON w=REMAINDER

2160 r=-1

2170 END SELect

2180 SELect ON s

2190 ON s=0 TO m

82

Chapter8 What We Want is Information

2200 w=-1

2210 r=-1

2220 ON s=m+1 TO q

2230 w=s-m

2240 ON s=REMAINDER

2250 w=qg-m

2260 IF r=-1 THEN w=-1

2270 END SELect

2280 s=w

2290 w=1(n)

2300 SELect ON w

2310 ON w=3

2320 c$="*"

2330 ON w=4

2340 c$="C"

2350 END SElLect

2360 IF r>0 THEN

2370 FOR w=1 TO r:e$=e$8&8" "
2380 END IF

2390 IF r<>-1 THEN e$=e$&c$
2400 IF s>r THEN

2410 FOR w=r TO s-1:e$=-e$88c$
2420 END IF

2430 PRINT e$

2440 END FOR n

2450 PRINT “SCALE IS ONE CHARACTE
R = ";LENGTH:"” ”";U$

2460 PRINT “"PROJECT LENGTH = ”"; (P
LANEND+1)*LENGTH:;"” “;U$

2470 PRINT “"MANPOWER UTILISATION
= ";1E-2*INT(UTIL*100+.5);"x”; MANPOW
ER

2480 IF q<PLANEND THEN

2490 INPUT "PRESS ENTER FOR NEXT
PAGE OF PLAN " ;e$

2500 ELSE

2510 INPUT “PRESS ENTER TO CONTI
NUE " ;e$

2520 EXIT PLANPAGE

2530 END IF

2540 END REPeat PLANPAGE

2550 ON v=84

2560 CLS

2570 FOR n=1 TO TOTAL

2580 PRINT "TASK ”“;CHR$(n+64);" =
"“;A$(1,n)

2590 END FOR n

2600 INPUT “"PRESS ENTER TO CONTINU
E ";e$

2610 END SElLect

2620 END REPeat RESLOOP

2630 END DEFine

83

Introduction to Simulation Techniques on the Sinclair QL

2640 REMark VARIABLES LIST

2650 REMark A(1,1 -> 15)=START OF TAS
K (UNITS OF TIME FROM START OF PROJEC
T)

2660 REMark A(2,1 -> 15)=DURATION OF
TASK (UNITS OF TIME)

2670 REMark A(3,1 -> 15)=MANPOWER REQ
UIREMENT OF TASK (PEOPLE)

2680 REMark A(4,1 -> 15)=LATEST START
TIME POSSIBLE FOR TASK

WITHOUT DELAYING PROJECT END

2690 REMark A${(1,1 -> 15)=TITLES OF T

ASKS

2700 REMark A$(2.,1 -> 15)=RECORD OF T

ASKS WHICH MUST BE COMPLETED BEFORE

CURRENT TASK

2710 REMark O$(1 -> 15)=RECORDS ORDER
OF TASKS AS PLAN IS BUILT UP

2720 REMark 1(1 -> 15)=INDICATOR OF T
ASK STATUS AS PROGRAM STEPS THROUGH
PLAN 0-TASK WAITING FOR COMPLETION OF
OTHER TASKS

2730 REMark 1-TASK WAITING FOR EFF
ORT

2740 REMark 2-TASK IN PROGRESS
2750 REMark 3-TASK COMPLETE

2760 REMark 4-TASK ON CRITICAL-PAT
H

2770 REMark FREE=MANPOWER CURRENTLY U
NALLOCATED

2780 REMark LENGTH=LENGTH OF TIMESTEP
2790 REMark MANPOWER=MAXIMUM AVAILABL
E MANPOWER

2800 REMark PLANEND=END OF PROJECT PL
AN

2810 REMark T=INDICATOR (IF T=0 THEN
CANNOT START NEW TASK)

2820 REMark TIME=CURRENT TIME

2830 REMark TOTAL=TOTAL NO OF TASKS {
UP TO 15)

2840 REMark UTIL=OVERALL UTILISATION
OF AVAILABLE MANPOWER

2850 REMark B$=UNITS FOR TIMESTEP
2860 REMark b$=INPUT CHOICE FOR TASK
LIST OR PLAN

2870 REMark c$=HOLDS “C” OR "*”

2880 REMark e$=HOLDS SINGLE TASK PLOT
& MISC.

2890 REMark m=START TIME FOR PLOT
2900 REMark n=LOOP VARIABLE

2910 REMark p=PAGE NO

2920 REMark q=END TIME FOR PLOT

84

Chapter8 What We Want is Information

2930 REMark r=START TIME FOR TASK
2940 REMark s=END TIME FOR TASK

85

CHAPTER 9
And Out of the Unknown. ..

Simulating the unknown

AW bt 2 fo Syt Ak
/

87

Introduction to Simulation Techniques on the Sinclair QL

How is it possible to simulate the unknown?

Background

Nearly all simulations involve elements of the unknown. One of the major
classes of simulation however, as I described in Chapter 3, is the analytical
simulation which is designed to investigate the unknown characteristics of
a system. Analytical simulations take known features of the system in
question and, by making various assumptions about the workings of the
system, fill in the unknown areas to give a practical working model of the
system.

Analytical simulations of unknown system-characteristics are extremely
experimental in nature: although you may have theories about how the
simulation will work, it is only when you actually start to test the thing out
that you begin to verify and extend those theories. Trial and error is the
order of the day, and this sets the conditions under which a technique can
be adopted. A highly detailed emulation technique is most unlikely to be
useful if the unknown parts of the system are a significant part of the
whole. It is better to start off with a simple simulation which models the
major system responses only and gradually to extend this into a more
complex model as you gain knowledge of the system.

Another well-used approach is to use knowledge of other similar systems
to provide a model of the system to be investigated, and thus to predict its
characteristics. For example, if you are the manager of a Formula 1 car
racing team and wish to analyse the performance of a competitor’s car then
probably the best starting point would be to model your own car first and
use this as a basis for your evaluation. A further example of the use of
existing knowledge to predict the characteristics of something new is the
development and use of commercial expert systems. These are specifically
designed to build up a store of knowledge in such a way that new systems
with unknown characteristics can be emulated and described.

Example
One of the more interesting examples from my case-book is a simple simu-
lation which attempts something which I have described, in previous
chapters, as extremely difficult and unreliable. The interest comes not only
from the practical aspect of the simulation, but also in the techniques used.
Over the past few years, I have worked on several projects for the
famous kite makers, Lookitthat Ltd. Their research department, consist-
ing of the company founder, Ivor Problem, and his secretary, Sophie Aye,
were having difficulties with their hardware development because they
could never predict whether or not there would be sufficient wind to try out
their latest kites. They were having trouble planning their work around our

88

Chapter9 And Out of the Unknown. . .

changeable weather and asked for a method for predicting the weather
tomorrow given a simple description of today’s weather.

My solution to their problem, which I originally designed for use on the
Sinclair ZX81 but which becomes much more versatile on the QL, is a
simple simulation of the weather changes from day to day, with a predic-
tion of the likelihood that the weather tomorrow will be suitable for kite
flying.

Simulation development

The requirement is for a model of weather conditions which vary from day
to day, and which will indicate the likely conditions one day ahead.
Obviously, I cannot expect Ivor Problem to spend a lot of time taking wind
and temperature readings or constantly phoning the local meteorological
office for information — data input must be simple. Also, I should be able
to give Ivor a direct indication as to how probable it is that he will be able to
fly his kites — output must be simple.

Any of the techniques mentioned in Chapter 4 for modelling probabili-
ties could be adopted. I chose a Markov chain approach as the basic means
of predicting weather changes (see Chapter 4), because of the relative
simplicity of the model itself and the ease of running the developed simu-
lation. The system-state matrix is based on a very much simplified descrip-
tion of the weather, concentrating on three fundamental attributes of
temperature, wind strength, and rainfall (or other forms of precipitation,
snow for example). The most important attributes from Ivor’s point of
view are wind and rain. I also include temperature, as this gives an easily
understood indication of the general weather conditions, much easier than
air pressure or humidity. Another possibility which I have not included, in
order to keep the input as simple as possible, is the percentage cloud cover.
I list below the possible weather attributes and the resultant possible
system-states. Notice how I have chosen descriptions for the various
weather conditions which are immediately understandable by Ivor and
useful to him.

WEATHER ATTRIBUTE DESCRIPTION LABEL

WIND Too light for kite flying wo
OK for kite flying Wi
Too strong for kite flying w2

RAIN None: OK for kites RO

Light or infrequent: OK Rl
Heavy: No good for kites R2

TEMPERATURE Hot: OK TO
Intermediate:OK T1
Cold: Rather stay at home T2

89

Introduction to Simulation Techniques on the Sinclair QL

SYSTEM-STATE ATTRIBUTES SYSTEM-STATE ATTRIBUTES
0 WO RO TO 14 WI1RIT2
| WOROTI 15 W1R2TO
2 WO RO T2 16 WI1R2TI
3 WORITO 17 WI1R2T2
4 WORITI 18 W2ROTO
5 WORI1 T2 19 W2ROTI1
6 WOR2TO 20 W2 RO T2
7 WOR2TI 21 W2RITO
8 WOR2T2 22 W2RITI
9 W1 ROTO 23 W2RIT2

10 WIRO0OTI 24 W2R2TO

11 W1 RO T2 25 W2R2T1

12 W1 RITO 26 W2R2T2

13 WIRITI

The weather conditions which are suitable for kite flying are represented by
system-states 9, 10, 12, and 13.

But what about the transition matrix? If it’s warm, dry, and there’s a
steady wind blowing today, what will it be like tomorrow? The transition
matrix is a collection of probabilities of the weather changing from its
current state today into one of the 27 possible states tomorrow. The prob-
lem is that we don’t know what these probabilities are. My solution to this
problem is to give the simulation a capability to learn as more and more
data is input, and thus build up a store of knowledge. This is where the
analysis part of the program resides; the simulation builds up a model of
the weather. In this way the prograin also works like an extremely simple
expert system; the more information you give it, the more expert it
becomes — up to a point.

Two more points must be covered: we must set up initial values (guesses)
for the transition matrix and we must decide what we want in terms of
input/output.

Initial values for the transition matrix could be determined in a number
of different ways and then input manually. I have decided that it would be
better to give the simulation a running start and attempt to base the initial
transition matrix on a logical set of assumptions. Also, I want the program
itself to set up the initial transition matrix.

My first assumptions for the transition matrix probabilities are based on
the weather attributes of wind, rain, and temperature. Each of these can be
described in one of three states. I think it reasonable to assume that there is
a 60 per cent chance that a particular attribute will stay the same from one
day to the next and that, if it changes, it will not change from one extreme
to another. Thus, if it is raining lightly today, the chances of rain states RO,
R1, and R2 tomorrow are 0. 2, 0. 6, and 0. 2 respectively. Similarly, if it is
hot today, the probabilities of TO, T1, and T2 tomorrow are 0. 6,0. 4 and 0.

Finally, input and output. Each day the program needs to be informed

90

Chapter9 AndOut of the Unknown. . .

of the current weather conditions and will make a prediction based on the
estimated probability of system-states 9, 10, 12, or 13. It would not be very
kind to demand of Ivor that he remember all the system-states, which
would be the simplest form of input. The simulation asks about each of the
weather attributes in turn and, from this, determines the full system-state.

Output is in the form of a prediction of the suitability of the weather
tomorrow for kite flying and also an indication as to how much confidence
can be placed on the prediction. This confidence factor is an important
element of predictor simulations, as I have pointed out in Chapter 3. In this
case, it is not possible easily to derive a statistical confidence level for the
prediction because we do not know what the random element is, if any, in
the change of one weather state to another. We could make an assumption
based on a binomial distribution, or a Poisson distribution, or one of the
other common methods, but I see no justification for any of these with this
low-level simulation. What the program that I developed for Ivor doesisto
keep track of the number of times that the weather has been in a given state
and use this to give a rough indication of the reliability of the relevant
transition probabilities. If fewer than 10 previous similar weather states
have been recorded then the prediction will be at best unreliable. Between
10 and 30 then not too bad, over 30 and the results are getting to be as good
as the simulation can give. This defines the estimation of confidence and
the way of outputting that confidence level.

Storage of the transition matrix and data is important and is done auto-
matically (on request). A microdrive cartridge should be left in drive 1
whilst the program runs.

Results

This is a simple simulation which relies on the slow acquisition of data. It
thus takes some time to start producing reasonable results (typically one to
three months). This process can be shortened by making a trip to the local
library, and getting daily weather reports from the newspapers stored
there, and thus building up the stored data using historical data.

Once the data-base starts to build up, the predictions made by the simu-
lation are quite good, considerably better than just guessing. Of course the
output is very simple, which helps the prediction process, but the output is
also tailored to the specific requirements of Ivor Problem and he finds the
results more useful than trying to interpret the published weather
forecasts.

Program description
Figure 9.1 presents an overall flowchart for the program ‘Itmaybe’.

91

Introduction to Simulation Techniques on the Sinclair QL

(START ’

DATALOAD

Loads stored data
from microdrive.

DATANEW

Allows input and revision
of "today's" and "yesterday's"
weather (WEATHER & CHECK),
determines the system-state
and updates the record matrix
(STATERECORD) and modifies the
transition matrix
(NEWTRAN).

STORE

Asks whether to save data,
if so, saves data to

microdrive.

PREDICT

Multiplies system-state matrix
with transition matrix to
produce new system-state

matrix (MATMULT), and prints
prediction with confidence
indication derived from the
stored data.

(STOP)

Figure 9.1: Flowchart for Program ‘Itmaybe’.

92

Chapter9 And Out of the Unknown. . .

Definitions of program variables are given in REMark statements at the
end of the program listing. The routines used in the program have the
following functions.

PROCedure DATALOAD: Loads in the stored data from microdrive, and
sets values for yesterday’s weather from a set of temporary stores.

PROCedure DATANEW: Requssts input for today’s weather, verifies
both today’s and yesterday’s weather, determines the appropriate system-
state, updates the record matrix, and updates the transition matrix.

PROCedure STORE: Asks if data is to be stored on to microdrive, and, if
so, saves the new data.

PROCedure PREDICT: Multiplies the system-state matrix and the transi-
tion matrix, and prints out the prediction for tomorrow’s weather,
together with an indication of the reliability of the prediction, derived from
the historic data stored.

PROCedure WEATHER: Prints the request for weather data input, and
gives the options available.

PROCedure CHECK: Prints out the data stored for today’s and yester-
day’s weather and asks if it is correct. If not, allows for the modification of
the data.

PROCedure STATERECORD: Determines the system-state from the
data input, and updates the system-state matrix and the record matrix.

PROCedure NEWTRAN: Modifies the probabilities held in the transition
matrix gradually, according to the historical data held in the record matrix.

PROCedure DATASAVE: Sets today’s data into a temporary store, and
saves all data files.

PROCedure MATMULT: Produces predicted system-states by multiply-
ing the system-state and transition matrices together.

PROCedure WPRINT: Converts stored numerical values for the weather
into a verbal description.

PROCedure START__UP: Initialises and saves the program data.
PROCedure INITIAL: Sets up initial data for the transition matrix.

93

Introduction to Simulation Techniques on the Sinclair QL

PROCedure INITMISC: Requests initial data for today and yesterday,
and sets up the record matrix.

PROCedure DATASAVE__NEW: Creates the file WEATHER__DATA
ondrive 1.

FuNction keyinl: Waits for keyboard input and checks if it is 0, 1, or 2.

FuNction keyin2: Waits for keyboard input and checks if it is Y/y or
N/n.

FuNction setprob: Calculates the initial probabilities of the change of one
system-attribute into another. Used in the initialisation of the transition
matrix.

FuNction traninit: Calculates the probabilities of transition from a parti-
cular system-state into any other. Represents a single row of the initial
transition matrix before modification by historical data.

To run the program, the program must first initialise and save the data
arrays and data files, including the transition matrix. In order to do this,
you must run the initialisation routine by calling up PROCedure
START__UP directly. Simply type:

START__UP (enter)

and the program (with some assistance from you) will set up the initial
arrays. You will be asked for information on yesterday’s and today’s
weather, and the data will be saved to microdrive 1 (make sure there is a
cartridge in the drive before you start!).

Once the data is on microdrive, the main program can be used, and the
initialisation routine need not be used again.

Program improvements
I don’t think that there is a lot of point trying to add to the sophistication of
this model. If you want to fly a kite, sail a boat, go hang-gliding, or some-
thing else which requires prediction of some particular aspect of the
weather, then use the program at its current level. My feeling (note that I’'m
resorting to a qualitative argument here) is that increased complexity will
not improve the simulation and may, in fact, make it less reliable.

The basic technique, however, is very useful and can be applied in a
number of other fields. Some applications will demand a more detailed
approach. Watch out for any increase in the number of system-states — my

94

Chapter 9 And Out of the Unknown. . .

experience is that computing time goes up with the fourth power of the
number of system-states.

Program listing

100 REMark [|ITMAYBE

110 REMark INPUT "START_UP” AS A CIRE
CT COMMAND TO SET UP THE INITIAL DATA
120 REMark “"START_UP” REQUIRES A CART
RIDGE IN DRIVE 1

130 MODE 256

140 CSI1ZE 2,0

150 DATALOAD

160 DATANEW

170 STORE

180 PREDICT

190 STOP

200 DEFine PROCedure DATALOAD

210 LOCal n,m

220 CLS:PRINT "LOADING HISTORIC DATA
FROM M/DRIVE"

230 DIM TRAN(26.,26) ,REC(26,26) ,MISC(
2),S1(26),S2(26)

240 OPEN_IN #6;"MDV1_WEATHER_DATA"
250 FOR m=0 TO 26

260 FOR n=0 TO 26

270 INPUT #6; TRAN(m,n)

280 END FOR n

290 END FOR m

300 FOR m=0 TO 26

310 FOR n=0 TO 26
320 INPUT #6:REC(m,n)
330 END FOR n

340 END FOR m

350 FOR n=0 TO 2

360 INPUT #6:MISC(n)
370 END FOR n

380 CLOSE #6

390 W=MISC(0)

400 R=MISC(1)

410 T=MISC(2)

420 END DEFine

430 DEFine PROCedure DATANEW

440 as$="INPUT DATA FOR TODAY'S WEATH
ER”

450 WEATHER X,S,U,a$

460 CHECK

470 STATERECORD

480 NEWTRAN

490 END DEFine

95

Introduction to Simulation Techniques on the Sinclair QL

500 DEFine PROCedure STORE

510 LOCal a

520 CLS:PRINT “"DO YOU WANT TO UPDATE
THE DATA STORED ON MICRODRIVE (Y/N)?”
530 a=keyin2

540 SELect a=78,110:RETurn

550 DATASAVE

560 END DEFine

5670 DEFine PROCedure PREDICT

580 LOCal total.,m,n

590 CLS:PRINT “"WORKING ON RESULT”

600 MATMULT

610 CLS:PRINT "THE PROBABILITY OF SU
ITABLE WEATHER FOR KITE FLYING TOMORR
ow IS; ”

620 PRINT S2(9)+S2(10)+S2(12)+S2(13)
630 PRINT

640 PRINT

650 m=9*X+3*S+U

660 total=0

670 FOR n=0 TO 26

680 total=total +REC(m,n)

690 END FOR n

700 SELect ON total

710 ON total=0 TO 9

720 PRINT “THE PREDICTION IS UNREL
IABLE"”

730 ON total=10 TO 30

740 PRINT “THE PREDICTION IS NOT T
00 BAD”

750 ON total=REMAINDER

760 PRINT “"THE PREDICTION SHOULD B
E OK”

770 END SElLect
780 END DEFine

790 DEFine PROCedure WEATHER (WIND,RA
IN, TEMP,a$)
800 CLS:PRINT a$

810 PRINT "PRESS 0 IF WIND = TOO LIG
HT”

820 PRINT “"PRESS 1 IF WIND = OK~”

830 PRINT "PRESS 2 IF WIND = TOO STR

ONG”

840 WIND=keyin1
850 CLS:PRINT a$
860 PRINT "“PRESS 0
870 PRINT "“PRESS 1
D"

880 PRINT "PRESS 2

NO RAIN ETC”
RAIN NOT TOO BA

1}

RAIN TOO HEAVY”

96

Chapter9 AndOut of the Unknown. . .

890 RAIN=keyin1

900 CLS:PRINT a$

910 PRINT "PRESS 0 IF TEMP = HOT”
920 PRINT "PRESS 1 IF TEMP = OK”

930 PRINT "PRESS 2 IF TEMP = TOO COL
D"

940 TEMP=keyint

950 CLS

960 END DEFine

970 DEFine PROCedure CHECK

980 LOCal a,a$

990 REPeat CHECK1

1000 CLS:PRINT "THE WEATHER YESTERD
AY WAS; ”

1010 WPRINT W,R,T

1020 PRINT “1S THIS OK (Y/N)?”"

1030 a=keyin2

1040 SELect a=89,121:EXIT CHECK1
1050 a$="INPUT NEW DATA FOR YESTERD
AY'S WEATHER"

1060 WEATHER W,R,T,a$

1070 END REPeat CHECK1

1080 REPeat CHECK2

1090 CLS:PRINT “"TODAY'S WEATHER IS;
1100 WPRINT X,S.,U

1110 PRINT “1S THIS OK (Y/N)?”"

1120 a=keyin2

1130 SELect a=89,121:EXIT CHECK2
1140 a$="WHAT IS TODAY'S WEATHER?"”
1150 WEATHER X,S.,U,a$

1160 END REPeat CHECK2

1170 CLS

1180 END DEFine

1190 DEFine PROCedure STATERECORD
1200 LOCal n,m

1210 CLS:PRINT "EVALUATING STATE MAT
RIX"”

1220 FOR n=0 TO 26

1230 S1(n)=0

1240 END FOR n

1250 n=9*X+3*S+U

1260 S1(n)=1

1270 m=9*W+3*R+T

1280 REC(m,n)=REC(m,n)+1

1290 END DEFine

1300 DEFine PROCedure NEWTRAN

1310 LOCal m,n,total,p

1320 CLS:PRINT "REVISING TRANSITION
MATRIX"”

1330 m=9*W+3*R+T

97

Introduction to Simulation Techniques on the Sinclair QL

1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460

total=0
FOR n=0 TO 26
total=total+REC(m,n)
END FOR n
SELect ON total
ON total=0
FOR n=0 TO 26
TRAN(m,n)=traninit(m,n)
END FOR n
ON total=1 TO 99
p=total /100
FOR n=0 TO 26
TRAN(m,n)=(1-p)*traninit(m,n

)+p*REC(m,n)/total

1470
1480
1490
1500
1510
1520
1530

1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750

1760
1770
1780
1790
1800
1810
1820
1830

98

END FOR n
ON total=REMAINDER
FOR n=0 TO 26
TRAN(m,n)=REC(m,n)/total
END FOR n
END SELect
END DEFine

DEFine PROCedure DATASAVE
LOCal m,n
CLS:PRINT "SAVING NEW DATA”
MISC(0)=X
MISC(1)=S
MISC(2)=U
OPEN #6, "MDV1_WEATHER_DATA"”
FOR m=0 TO 26
FOR n=0 TO 26
PRINT #6; TRAN(m,n)
END FOR n
END FOR m
FOR m=0 TO 26
FOR n=0 TO 26
PRINT #6;REC(m,n)
END FOR n
END FOR m
FOR n=0 TO 2
PRINT #6;MI1SC(n)
END FOR n
CLOSE #6
END DEFine

DEFine PROCedure MATMULT

LOCal n,m

FOR n=0 TO 26

S2(n)=0

FOR m=0 TO 26
$2(n)=S2(n)+S1(m)*TRAN(m,n)
END FOR m

END FOR n

Chapter9 AndOutofthe Unknown. ..

1840 END DEFine

1850 DEFine PROCedure WPRINT (WIND, RA
IN, TEMP)

1860 SELect ON WIND

1870 ON WIND=0:PRINT "WIND TOO LIGH
T ”

1880 ON WIND=1:PRINT “WIND OK”

1890 ON WIND=2:PRINT “WIND TOO STRO
NG”

1900 END SElect

1910 SELect ON RAIN

1920 ON RAIN=0:PRINT “NO RAIN"

1930 ON RAIN=1:PRINT “"NOT TOO MUCH
RAIN"

1940 ON RAIN =2:PRINT "TOO RAINY”
1950 END SElLect

1960 SELect ON TEMP

1970 ON TEMP=0:PRINT "TEMP=HOT”
1980 ON TEMP=1:PRINT “TEMP=INTERMED
|ATE"

1990 ON TEMP=2:PRINT "TOO COLD”
2000 END SElect

2010 END DEFine

2020 DEFine PROCedure START_UP
2030 REMark INITIALISATION ONLY

2040 INITIAL

2050 INITRAN

2060 INITMISC
2070 STATERECORD
2080 NEWTRAN

2090 DATASAVE_NEW

2100 END DEFine

2110 DEFine PROCedure INITIAL

2120 DIM TRAN(26.,26) ,REC(26,26),MISC
(2),81(26),S8S2(26)

2130 END DEFine

2140 DEFine PROCedure INITRAN

2150 LOCal W,R, T,X,S,U

2160 CLS:PRINT "SETTING UP TRANSITIO
N MATRIX”

2170 FOR W=0 TO 2

2180 FOR R=0 TO 2

2190 FOR T=0 TO 2

2200 FOR X=0 TO 2

2210 FOR S=0 TO 2

2220 FOR U=0 TO 2

2230 TRAN(9*W+3*R+T,9*X+3*S+U)

=setprob(W,X)*setprob(R,S)*setprob(T
LU)

2240 NEXT U

2250 NEXT S

99

Introduction to Simulation Techniques on the Sinclair QL

2260 NEXT X
2270 NEXT T
2280 NEXT R
2290 NEXT W
2300 END DEFine

2310 DEFine PROCedure INITMISC
2320 LOCal n,m,a$
2330 a$="SET-UP WEATHER (=YESTERDAY)

2340 WEATHER W,R,T.,a$

2350 a$="SET-UP WEATHER (=TODAY)"”
2360 WEATHER X,S.,U,a$

2370 CHECK

2380 CLS:PRINT “"BLANKING HISTORIC RE
CORD*
2390 FOR m=0 TO 26
2400 FOR n=0 TO 26
2410 REC(m,n)=0
2420 END FOR n
2430 END FOR m

2440 END DEFine

2450 DEFine PROCedure DATASAVE_NEW
2460 LOCal m,n

2470 CLS:PRINT “SAVING INITIAL DATA”
2480 MISC(0)=X

2490 MISC(1)=S

2500 MISC(2)=U

2510 OPEN_NEW #6, "MDV1_WEATHER_DATA"
2520 FOR m=0 TO 26

2530 FOR n=0 TO 26

2540 PRINT #6;TRAN(m,n)

2550 END FOR n

2560 END FOR m

2570 FOR m=0 TO 26

2580 FOR n=0 TO 26

2590 PRINT #6;REC(m,n)

2600 END FOR n

2610 END FOR m

2620 FOR n=0 TO 2

2630 PRINT #6:MISC(n)

2640 END FOR n

2650 CLOSE #6

2660 END DEFine

2670 DEFine FuNction keyini

2680 LOCal a$.a

2690 REPeat KEY1_LOOP

2700 REPeat WAITLOOP:a$=INKEYS$:IF a
$="" THEN EXIT WAITLOOP

2710 REPeat KEYGET:a$=INKEY$:IF as$<
>”” THEN EXIT KEYGET

2720 a=CODE(a$):SELect a=48 TO 50:R

100

Chapter9 AndOut of the Unknown. . .

ETurn (a-48)
2730 END REPeat KEY1_LOOP
2740 END DEFine

2750 DEFine FuNction keyin2

2760 LOCal a$.,a

2770 REPeat KEY2_LOOP

2780 REPeat WAIT2:a$=INKEY$:IF a$="
" THEN EXIT WAIT2

2790 REPeat KEY2:a$=INKEY$:IF as$<>"”
" THEN EXIT KEY2

2800 a=CODE(a$)

2810 SELect a=78,89,110,121:RETurn
a

2820 END REPeat KEY2_LOOP

2830 END DEFine

2840 DEFine FuNction setprob(a,B)
2850 LOCal c.d

2860 c=B-a

2870 SELect ON ¢

2880 ON c¢c=2,-2

2890 d=0

2900 ON c=1,-1
2910 IF a=2 THEN
2920 d=.2

2930 ELSE

2940 d=.4

2950 END IF

2960 ON ¢c=0

2970 d=.6

2980 END SELect
2990 RETurn d
3000 END DEFine

3010 DEFine FuNction traninit(m,n)
3020 LOCal X,S,U

3030 X=INT(n/9)

3040 S=INT((n-X*9)/3)

3050 U=n-X*9-S*3

3060 RETurn setprob(W,X)*setprob(R,S
)*setprob(T,U)

3070 END DEFine

3080 REMark GLOBAL VARIABLES

3090 REMark MISC()=HOLDS AND STORES
VALUES OF TODAY'S WEATHER ATTRIBU
TES IN ORDER TO BE RETRIEVEDAS YEST
ERDAY'S WEATHER BY A FOLLOWING RUN
OF THE PROGRAM

3100 REMark R=YESTERDAY'S RAIN INDIC
ATOR

3110 REMark RAIN=TEMPORARY RAIN INDI
CATOR

101

Introduction to Simulation Techniques on the Sinclair QL

3120 REMark REC()=MATRIX

STORING THE

TOTAL NUMBER OF OCCURRENCES OF EACH

PARTICULAR SYSTEM-STATE.
3130 REMark S1()=CURRENT
E MATRIX

3140 REMark S2()=DERIVED
THE FOLLOWING DAY HOLDING
ED PROBABILITIES FOR EACH
E

SYSTEM-STAT

MATRIX FOR
THE PREDICT
SYSTEM-STAT

3150 REMark S=TODAY'S RAIN INDICATOR
3160 REMark T=YESTERDAY'S TEMPERATUR

E INDICATOR

3170 REMark TEMP=TEMPORARY TEMPERATU

RE INDICATOR

3180 REMark TRAN()=TRANSITION MATRIX
3190 REMark U=TODAY'S TEMPERATURE IN

DICATOR

3200 REMark W=YESTERDAY'S WIND INDIC

ATOR

3210 REMark WIND=TEMPORARY WIND INDI

CATOR

3220 REMark X=TODAY'S WIND INDICATOR

102

CHAPTER 10
Campaign For Real-time

Real-time simulation

103

Introduction to Simulation Techniques on the Sinclair QL

Training simulators and computer games: real-time simulations are a fast-
growing business.

Background

Real-time simulators are usually designed to interact with humans. The
interaction is often sophisticated in nature: complex images are produced,
inputs of various kinds are recognised and acted upon, sounds are pro-
duced, and equipment external to the computer may be activated. Because
of the inherent complexity of most real-time simulations and the speed of
computation required, it is normally necessary to resort to the use of
machine code when using a microcomputer. Thus the bulk of real-time
simulations are beyond the scope of this book.

Having said that most real-time simulations require the use of machine-
code programming, let me now indicate the sort of things that can be done
with a high-level language.

In the training field, it is often not necessary to provide a complex screen
image and programming time can be saved by having only a small propor-
tion of the image moving at any one time. Thus, where dials and gauges,
for example, are represented, they should be presented in as simple a form
as possible and only the moving part of the image may need to be simu-
lated. If hardware in addition to the microcomputer is to be used, then it is
quite possible that the high-level language will be fast enough.

Simulators may be used in the testing of hardware, duplicating in a con-
trolled and repeatable manner the extended use of a product. Specialised
machinery is usually required for such testing, but a low-cost test facility
based on a microcomputer can be a practical proposition in some cases.
Again, the high-level language will often be sufficient.

Games written in high-level languages will always compare badly with
rivals produced in machine code and thus will have a limited commercial
value (the reason most computer games are produced). Some concepts are
simple enough to allow the high-level language to be used but will almost
certainly demand considerable skill from the programmer.

The simulation technique most often used in real-time is based on the
Monte Carlo approach. Obviously, a real-time simulation will normally
only represent a single (though changing) system-state. When alternative
system responses are possible, a random response will be more useful than
a deterministic response, unless repeatability is required. Thus the Monte
Carlo approach is often used.

There is much more to a real-time simulation than just predicting the
system response, however. A large portion of such a simulation program
may be devoted to the presentation of the system, the display, sound, or
movement of external hardware. It is often this portion of the program
which can give the programmer the greatest difficulties, partly because it is

104

Chapter 10 Campaign for Real-time

here that fast-executing routines will be required and also because much of
the programming task will demand the solution of unique problems.

Normally it is possible to trade off memory for execution speed by
making use of pre-stored images, using look-up tables rather than per-
forming calculations, and using repetetive blocks of program rather than
calling subroutines. A detailed knowledge of the execution times of
various program statements can indicate the quickest ways of doing things.

Real-time simulations use a time-step to move from one system-state to
the next. A longer time-step will provide more computing time but may lead
to unrealistic behaviour (jerky or slow responses). Normally the time-step
is constant and it is important to make sure that, where alternative system-
reponses are possible, the time taken by the program to represent such
responses remains constant. Careful attention must be paid to program
execution speed because of this, and it is common to use delays of variable
length to keep all execution speeds constant. Such delays can also be used
to control the overall speed of the running of the simulation. A reductionin
an in-built delay whilst the simulation is running will reduce the time-step
and hence speed up the simulation.

Example
My final example is a rudimentary game. I have chosen this to demonstrate
some of the points made above.

The game is based on the concept of volley-ball. A high net divides the
screen into two. On each side of the net, there is a single player who can
move from side to side and hit a ball which must be knocked over the net.
Players are represented as a short line known as a paddle.

The object of the game is to force the opposing player (in this case the
computer) to drop the ball. Each player may hit the ball up to three times
before passing it over the net; if the player hits the ball a fourth time then
this counts as a dropped ball. If the ball is hit too hard and goes right over
the opposition’s playing area then again this counts as a dropped ball.

Points are scored when a ball is dropped. You score one point if your
opponent drops the ball after you have served. If your opponent served
and also dropped the ball then you do not score a point, but gain the right
to serve and thus have a chance of scoring the next point.

One more thing. The game is being played on the moon! Why does it
have to be on the moon? The answer is quite simply that I could not get the
thing to run fast enough to represent realistically a genuine game of volley-
ball and hence had to change reality a bit to fit the simulation.

Simulation development and results
I’m not going to tell you anything at all about program development. You
must work your way through the listing itself to see the various tricks that I

105

Introduction to S:mulation Techniques on the Sinclair QL

have used. For example, how have I arranged for the computer to play its
moves? Or why have I used KEYROW(1) to read the keyboard rather than
INKEY$? Or why have I not put a check in to stop the ball going off the top
of the screen?

As for the results, see for yourself.

Program description
No flowchart for this one, even though it is the most complex program in
the book — again I want you to sort through for yourself.

Here are some notes on the routines though.

PROCedure INITIAL: Sets up data for whole program.
PROCedure START__UP: Sets up data for each ball.

PROCedure MAKE__DISPLAY: Produces the initial screen display, the
playing area. You are represented on the left of the pitch.

PROCedure PLAYERS__TURN: Examines the keyboard for arrow keys
being pressed and moves the lefthand paddle if appropriate.

PROCedure COMPUTERS__TURN: Automatically decides the action to
be taken by the computer.

PROCedure MOVE__BALL: Updates the ball coordinates but does not
print the ball.

PROCedure TEST__FOR__HIT: Tests the new ball coordinates for hits
against the side, the net, the paddles, and the base.

PROCedure BALL__OUT: Calls SCORE or NO_SCORE depending on
who served and where the ball fell.

PROCedure HIT__NET: Sets ball position next to the net and sets ball
speed to zero.

PROCedure HIT__PADDLE: Gives new ball speeds according to how
hard ball is to be hit. Tests for ball hit too many times.

PROCedure BALL__DROPPED: Similar to BALL__OUT.

PROCedure BALL__PRINT: Removes the old ball image and prints a
new one.

PROCedure MOVE__PADDLE: Produces the moving images of the
paddles. How does this work?

106

Chapter 10 Campaign for Real-time
PROCedure SCORE: Updates the score and displays the totals.

PROCedure NO__SCORE: Notifies vou that the service is changing after
a ball is lost without scoring.

Program use and further development

Warning. Some early QLs (with bugs!) can run only small programs.
LUNA__BALL is reaching the limit and will ‘crash’ after a few minutes
running: save on to microdrive cartridge before running, to avoid losing
your program.

The program runs automatically and even performs the serve (for both
players). Use the left/right arrow keys to move your paddle and the
up/down arrow keys to hit the ball hard or softly. Only one key should be
pressed at a time, otherwise you will be ignored.

Improvements are many. Sound can be added, a limit to the number of
points which can be scored would add to realism, the computer’s play
could be uprated, and so on. As I have mentioned before, the QL screen
display is slow, and this limits the whole game: a more complex screen
would probably slow things down even more.

That’s about it. I hope you have found this book useful. All I can do now
is wish you success with your simulations.

Program listing

100 REMark LUNA_BALL
110 MODE 256

120 CSIZE 2,0

130 INITIAL

140 REPeat game_loop
150 START_UP

160 MAKE_DISPLAY
170 REPeat ball_in_play
180 PLAYERS_TURN
190 COMPUTERS_TURN
200 MOVE_BALL

210 TEST_FOR_HIT
220 SELect ON E

230 ON E=1 TO 2

240 BALL_OUT

250 EXIT ball_in_play

260 ON E=3

270 HIT_NET

280 ON E=4 TO 5

290 HIT_PADDLE

300 IF H>4 THEN BALL_DROPPED::EXIT
ball_in_play

107

Introduction to Simulation Techniques on the Sinclair QL

310
320
330
340
350
360
370
380
390

400
410
420
430
440
450

460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710

720
730
740
750
760
770
780
790
800
810

108

ON E=6 TO 7
BALL_DROPPED
EXIT ball_in_play
END SELect
BALL_PRINT
PAUSE 10
END REPeat ball_in_play
END REPeat game_loop
STOP

DEFine PROCedure INITIAL
G=5

SCL=0

SCR=0

S=RND (1)

END DEFine INITIAL

DEFine PROCedure START_UP
1=S
H=1
SELect ON S
ON S=0
VY=-40
VX=20
XB=72
IXB=6
0OXB=6
YB=180
1YB=18
oYB=18
ON S=1
VY=-40
VX=-20
XB=360
IXB=30
OXB=30
YB=180
1YB=18
0YB=18
END SELect
XPL=7
XPR=29
END DEFine

DEFine PROCedure MAKE_DISPLAY
LOCal n

INK 0

PAPER 1

CLS

FOR n=0 TO 19
CURSOR 12,n*10
PAPER 2
PRINT ” ”“":REMark 1 space
CURSOR 420,n*10

Chapter 10 Campaign for Real-time

820 PAPER 3

830 PRINT ” ":REMark 1 space
840 END FOR n

850 FOR n=13 TO 19

860 CURSOR 216 ,n*10

870 PAPER 7

880 PRINT ” ”":REMark 1 space
890 END FOR n

900 MOVE_PADDLE XPL,2

910 MOVE_PADDLE XPR,3

920 BALL_PRINT

930 PAUSE RND(50,100)

940 END DEFine

950 DEFine PROCedure PLAYERS_TURN
960 IPL=KEYROW(1)

970 SELect ON IPL

980 ON IPL=2

990 IF XPL>5 THEN XPL=XPL-1
1000 ON IPL=16
1010 IF XPL<14 THEN XPL=XPL+1

1020 END SElLect
1030 MOVE_PADDLE XPL,2
1040 END DEFine

1050 DEFine PROCedure COMPUTERS_TURN
1060 LOCal a

1070 a=-1

1080 IF XPR=22 THEN a-=0

1090 IF IXB>=0XB AND IXB>XPR-4 AND X
PR<31 THEN a=1

1100 XPR=a+XPR

1110 MOVE_PADDLE XPR.,3

1120 IPR=4+124*RND(1)

1130 END DEFine

1140 DEFine PROCedure MOVE_BALL
1150 XB=XB+VX

1160 VY=VY+G

1170 YB=YB+VY

1180 IXB=INT(XB/12)

1190 1YB=INT(YB/10)

1200 END DEFine

1210 DEFine PROCedure TEST_FOR_HIT
1220 LOCal a.b

1230 SELect ON IXB

1240 ON I1XB=-100 TO 1

1250 E=1

1260 RETurn :REMark ball off left
1270 ON IXB=35 TO 200

1280 E=2

1290 RETurn :REMark ball off right

1300 ON 1XB=0XB

109

Introduction to Simulation Techniques on the Sinclair QL

1310 IF 1XB=18 THEN

1320 IF 1YB>12 THEN E=3:RETurn :R
EMark ball drops on net

1330 END 1IF

1340 ON IXB=REMAINDER

1350 b=18

1360 a=1YB+(18-1XB)*(0YB-1YB)/ (OXB
-1XB)

1370 IF a>=13 THEN

1380 I1F IXB>OXB THEN

1390 SELect b=0OXB TO IXB:E=3:RET
urn :REMark hit net

1400 ELSE

1410 SELect b=1XB TO OXB:E=3:RET
urn :REMark hit net

1420 END IF

1430 END IF

1440 END SElLect
1450 IF 1YB>18 THEN
1460 SELect ON IXB

1470 ON IXB=XPL-2 TO XPL+2

1480 E=4

1490 RETurn :REMark hit left padd
le

1500 ON IXB=XPR-2 TO XPR+2

1510 E=5

1520 RETurn :REMark hit right pad
dle

1530 ON IXB=2 TO 17

1540 E=6

1550 RETurn :REMark hit base on |
eft

1560 ON IXB=REMAINDER

1570 E=7

1580 RETurn :REMark hit base on r
ight

1590 END SElLect
1600 END IF

1610 E=0

1620 END DEFine

1630 DEFine PROCedure BALL_OUT
1640 SELect ON E
1650 ON E=1

1660 IF S=0 THEN
1670 SCORE

1680 ELSE

1690 NO_SCORE
1700 END IF

1710 ON E=2

1720 IF S=1 THEN
1730 SCORE

1740 ELSE

110

1750
1760
1770
1780

1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920

1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250

Chapter 10 Campaign for Real-time

NO_SCORE

END IF
END SElLect
END DEFine

DEFine PROCedure HIT_NET
IF 1YB>18 THEN 1YB=18:YB=180
VX=0
YV=0
SELect ON IXB

ON IXB=2 TO 17
XB=204
ON IXB=19 TO 34
XB=228
ON I1XB=18
XB=204+24*RND(1)
END SElLect
IXB=INT(XB/12)
END DEFine

DEFine PROCedure HIT_PADDLE
SELect ON E
ON E=4
IF 1=0 THEN
H=H+1
ELSE
H=1
1=0
END IF
SELect ON IPL
ON IPL=4
vY=-40
VX=INT(RND(1,3)*-VY/4)
ON IPL=128
VY=-20
VX=INT(RND(1,3)*-VY/4)
ON IPL=REMAINDER
VY=-VY
END SElLect
ON E=5
IF 1=1 THEN
H=H+1
ELSE
H=1
=1
END IF
SELect ON IPR
ON IPR=128
vY=-20
VX=-INT(RND(1,3)*-VY/4)
ON |IPR=4
VY=-40
VX=-INT(RND(1,3)*-VY/4)

111

Introduction to Simulation Techniques on the Sinclair QL

2260 ON IPR=REMAINDER
2270 VY=-VY
2280 END SElLect

2290 END SElLect
2300 YB=180
2310 1YB=18
2320 END DEFine

2330 DEFine PROCedure BALL_DROPPED
2340 SELect ON E
2350 ON E=6

2360 IF S=1 THEN
2370 SCORE

2380 ELSE

2390 NO_SCORE
2400 END IF

2410 ON E=7

2420 IF S=0 THEN
2430 SCORE

2440 ELSE

2450 NO_SCORE
2460 END IF

2470 END SElect
2480 END DEFine

2490 DEFine PROCedure BALL_PRINT
2500 CURSOR 12*0XB,10*0YB

2510 PAPER 1

2520 PRINT ” ":REMark 1 space
2530 CURSOR 12*I1XB,10*1YB

2540 INK 7

2550 PRINT "0”

2560 OXB=1XB

2570 OYB=1YB

2580 END DEFine

2590 DEFine PROCedure MOVE_PADDLE (XP
,C)

2600 CURSOR 12*(XP-3),190

2610 PAPER 1

2620 PRINT ” ”";:REMark 1 space
2630 PAPER C
2640 PRINT ”~ ", :REMark 5 spaces

2650 PAPER 1
2660 PRINT ” ”":REMark 1 space
2670 END DEFine

2680 DEFine PROCedure SCORE

2690 INK 1

2700 PAPER 7

2710 CLs

2720 CURSOR 72,100

2730 PRINT “THIS IS THE LATEST SCORE

"

112

Chapter 10 Campaign for Real-time

2740 SELect ON S
2750 ON S=0

2760 SCL=SCL+1
2770 ON S=1
2780 SCR=SCR+1

2790 END SELect

2800 CURSOR 168,130

2810 PRINT “YOU HAVE " ;SCL
2820 CURSOR 168,150

2830 PRINT “1 HAVE " ;SCR
2840 PAUSE 150

2850 END DEFine

2860 DEFine PROCedure NO_SCORE
2870 INK 7

2880 PAPER 1

2890 CLS

2900 CURSOR 180.50

2910 PRINT “NO SCORE”

2920 CURSOR 144,70

2930 PRINT “CHANGE SERVICE”
2940 PAUSE 150

2950 IF S=1 THEN

2960 S$=0
2970 ELSE
2980 $=1

2990 END IF
3000 END DEFine

3010 REMark VARIABLES LIST

3020 REMark C=paddle colour

3030 REMark E=indicator of TEST_HIT
3040 REMark O-nothing hit 1-off left
2-0ff right

3050 REMark 3-hit net 4-hit left padd
le 5-hit right paddle

3060 REMark 6-hit base to left 7-hit
base to right

3070 REMark G=effect of gravity

3080 REMark H=counts consecutive hits
of the ball

3090 REMark lI=indicator of who last h
it ball

3100 REMark O-player on left 1-player
on right

3110 REMark IPL,IPR=indicators for pl
ayer commands (left and right)

3120 REMark 0-no command 2-move paddl
e left 16-move paddle right

3130 REMark 128-hit ball softly 4-hit
ball hard

3140 REMark IXB,lYB=integer giving ba
1l print position (character coords)

113

Introduction to Simulation Techniques on the Sinclair QL

3150 REMark OXB,0YB=previous time-ste
p value of IXB,I1YB

3160 REMark S=service indicator O-lef
t 1-right

3170 REMark SCR,SCL=score record for
left and right

3180 REMark VX,VY=ball speeds

3190 REMark XB=x-position of ball (CU
RSOR co-ordinates)

3200 REMark XP=x-position for paddle
print

3210 REMark XPL,XPR=x-position of lef
t-hand end of left and right paddles

3220 REMark YB=y-position of ball (CU

RSOR co-ordinates)

114

Glossary

ALGORITHM: A step-by-step definition of the solution to a problem,
often used as the basis of a program.

ARTIFICIAL INTELLIGENCE: A field of research into the simulation
of aspects of human intelligence.

ASSEMBLER CODE: The set of binary instructions that the processor
chip uses, a ‘low-level’ programming language.

AVERAGING PROCESS: The arithmetic average or ‘mean’ is obtained

by adding all the values and then dividing the result by the number
of values.

BASIC: Beginners All-purpose Symbolic Instruction Code.

BINOMIAL DISTRIBUTION: A common mathematical distribution.

BIT: A binary digit — a 0 or a 1 — the smallest piece of information a
computer can handle.

BLOCK DIAGRAM: A coarse representation of a program, indicating the
major subroutines, such as the main controlling routines, input and
output routines, and specialist subroutines. Useful in program develop-
ment.

CAUSAL DIAGRAM: A diagram which represents the possible responses
of a system to different situations, and shows the links between possible
system characteristics. i

CLOSED-LOOP: A loop which operates automatically and is contained
within the system itself.

COMPILER: Software that can translate a ‘high-level’ language into
assembler code, which the computer executes.

COMPRESSION RATIO: The ratio of the volume of uncompressed air
above the piston at the bottom of its cycle, to that of compressed air when
the piston is at the top of its cycle, ie maximum to minimum volume.

COMPUTER-AIDED DESIGN (CAD): Using a computer to design

products.

CONFIDENCE LEVEL: An indication of the confidence with which the
results of a calculation or prediction should be viewed.

CONTROL THEORY: The mathematics and techniques used to analyse
control systems.

CRITICAL-PATH ANALYSIS: An analysis of a number of dependent

and independent items, designed to indicate which of the items are critical
to the optimised execution of all the items.

115

Introduction to Simulation Techniques on the Sinclair QL

DETERMINISTIC PROCESS: A process in which the most probable out-
come is always chosen.

EMPIRICAL: Defined by experimental results; not theoretical.

EXPERT SYSTEM: A program that imitates some aspects of human
knowledge.

EXTERNAL-EVENTS: Events which occur outside a defined system,
and which may or may not affect the system.

FEEDBACK: The modification or control of a process or system by
reference to its results or effects.

FINITE-ELEMENT MODEL: A model of a structure which represents
the whole structure as a number of smaller, simple elements.

FLOWCHART: Diagrams which show the logical paths followed by a
program. They can vary in detail, from a presentation of all the routines/
processes and the order in which they are called, to an almost line-by-line
description of a single routine or process.

FLUID DYNAMICS: A branch of physical science, concerned with the
behaviour of fluids.

FORWARD DEPENDENCY: An indication of how events in the future
will be affected by those happening in the present.

FUNCTION CHART: A chart or diagram which describes the
components of a system in terms of their function within the system.
FUNCTIONAL DESCRIPTION: A description of a component of a

system in terms of its function within that system.

HARDCOPY: Jargon for a printout.

INTEGER: A whole number, either positive or negative: 2, 100, -23 are
integers, whereas -0. 5, 3/2, 3006. 10 are not.

INTERFACE: The interaction of a system with anything not defined as
part of the system.

INTERNAL EVENTS: Events which occur within the defined system.

ITERATION: Repetition.

LIMITS: The definition of the extent of a system, in mathematical, spatial,
logical, physical, or other appropriate terms.

LINEAR: A sequence of events in which one event is directly followed by
another, ie in a line.

MACHINE CODE: See ASSEMBLER CODE
MAINFRAME: A large computer.

MARKOV CHAIN PROCESS: A method of handling probabilities so
that a number of outcomes can be modelled.

116

Glossary

MATRIX OPERATIONS: A matrix is simply a rectangular array of
numbers or formulae. Matrices of the same dimensions can be added to
or subtracted from each other by adding or subtracting corresponding

elements, eg:
2 4 6 1 2 3 2+14+26+3 |=| 3 6 9
g1012| Y |4 5 6 8+410+512+6 12 15 18
2 46 |—-]1 23 2-1 42 63 [=1]1 2 3
8 10 12 4 5 6 8-4 10-5 12-6 4 5 6
Matrices can also be multiplied together, which can be very useful if the
matrices contain definitions of various system-states and the probabili-
ties of transition between one state and another (Markov Chain process).
Matrices can only be multiplied together if the number of rows in
one is equal to the number of columns in the other, ie a 3 X 2 matrix
may be multiplied by a 2 X 2 matrix, and the resultant matrix will
have dimensions 3 x 2.
The multiplication process can be shown as follows:

I

a b I:A B [a*A] + [b*C] [a*B]+[b*D]
¢ d| * |C D] = |lc*Al+[d*C] [c*B]+[d*D)
e f [e*Al +[f*C] [e*B]+[f*D]

each element of the product matrix comes from a row in the first matrix
combined with a column in the second matrix.

MEAN: See AVERAGING PROCESS.

MENU-DRIVEN: Program which offers a list of possible choices from
which the user can select.

MONTE CARLO PROCESS: In the Monte Carlo process, a single
response is selected randomly according to the probabilities of all pos-
sible responses. In order to obtain an average response, the process is re-
peated (each cycle is termed a pass), and the results of all passes added and
then divided by the number of passes performed. See Chapters 4 and 10.

OPEN LOOP: A loop which requires something external to complete the
loop. See Chapter 4.

OPERATING SYSTEM: Software that takes care of all the operations
required by most programs, such as displaying characters on the screen,
accepting characters input from the keyboard, and operating micro or
disk drives.

OPERATIONAL ANALYSIS: The study of the operations of a system,
eg traffic flow, critical-path analysis, and time and motion studies.

OPTIMUM: The best or most favourable; not necessarily the maximum.

117

Introduction to Simulation Techniques on the Sinclair QL

PARALLEL PROCESS: A process in which more than one outcome or
state can be represented at any one time, eg Markov chain.

PERIPHERALS: Devices that are separate from the main computer, such
as printers and joysticks.

POISSON DISTRIBUTION: A common mathematical distribution.

PREDICTION: A forecast of the future based on a knowledge of past
events.

PROBABILITY: The probability of an event happening is defined as:

The number of outcomes leading to the event

The total number of possible outcomes
Assuming that all outcomes are equally likely. Note:

1) The probability of an event lies between 0 and 1. The probability of
a certain event is 1, and that of an impossible event is 0.

2) If the probability of an event happening is p, then the probability
of it not happening is 1-p.

3) If two independent events have the probabilities pl and p2, then
the probability of both the events happening is p1*p2.

REAL-TIME PROCESS: A process for which the simulated time-step is
identical to the actual time taken.

RELIABILITY: A measure of the failure of a system, usually as a pro-

babi lity or percentage, derived from the results of tests of the system or a
record of failures encountered whilst using the system.

RELIABILITY GROWTH: An indication of trends in reliability,

gen erally produced for a new product or piece of hardware, in order to

esti mate when it will be sufficiently reliable to be manufactured.

RICH PICTURES: Usually a freehand drawing depicting parts of a
system.

SENSITIVITY ANALYSIS: Series of tests designed to indicate how
responsive a simulation is to its various parameters.

SERIAL OPERATIONS: Operations that take place consecutively.

SUB-SYSTEM

SYSTEMS See Chapter 2.

SYSTEMS ANALYSTS

SYSTEM-STATE: Definition of the attributes of a system such that its
state can be identified. See Chapters 4 and 9.

SYSTEM-STATE MATRIX: An array (matrix) which contains informa-
tion about various attributes of a system, and uniquely defines a number
of possible states of the system. See Chapters 4 and 9.

118

Glossary

THERMODYNAMICS: A branch of physical science concerend with the
effects of heat energy.

TIME-STEP: Time between consecutive system states as represented by
the simulation.

TIME-TRANSIENT: Changing with time.

TRANSFORMATION MATRIX: An array (matrix) which contains the
probabilities of a system changing from one state to another. Multiplica-
tion of the transition matrix with the system-state matrix will give an
update of the system-state. See Chapters 4 and 9.

UTILISATION: A measure of the actual use of available resources.

VERIFICATION: Confirmation of correctness.

119

Other titles from Sunshine
SPECTRUM BOOKS

Artificial Intelligence on the Spectrum Computer

Keith & Steven Brain ISBN 0 946408 37 8 £6.95
Spectrum Adventures

Tony Bridge & Roy Carnell ISBN 0 946408 07 6 £5.95
Machine Code Sprites and Graphics for the ZX Spectrum
John Durst ISBN 0 946408 51 3 £6.95
ZX Spectrum Astronomy

Maurice Gavin ISBN 0 946408 24 6 £6.95
Spectrum Machine Code Applications

David Laine ISBN 0 946408 17 3 £6.95
The Working Spectrum

David Lawrence ISBN 0 946408 00 9 £5.95
Inside Your Spectrum

Jeff Naylor & Diane Rogers ISBN 0 946408 35 1 £6.95
Master your ZX Microdrive

Andrew Pennell ISBN 0 946408 19 X £6.95

COMMODORE 64 BOOKS

Graphic Art for the Commodore 64

Boris Allan ISBN 0 946408 15 7 £5.95
DIY Robotics and Sensors on the Commodore Computer
John Billingsley ISBN 0 946408 30 0 £6.95
Artificial Intelligence on the Commodore 64

Keith & Steven Brain ISBN 0 946408 29 7 £6.95
Machine Code Graphics and Sound for the Commodore 64
Mark England & David Lawrence ISBN 0 946408 28 9 £6.95
Commodore 64 Adventures

Mike Grace ISBN 0 946408 11 4 £5.95
Business Applications for the Commodore 64

James Hall ISBN 0 946408 12 2 £5.95
Mathematics on the Commodore 64

Czes Kosniowski ISBN 0 946408 14 9 £5.95
Advanced Programming Techniques on the Commodore 64
David Lawrence ISBN 0 946408 23 8 £5.95

121

Commodore 64 Disk Companion

David Lawrence & Mark England ISBN 0 946408 49 1| £7.95
The Working Commodore 64

David Lawrence ISBN 0 946408 02 S £5.95
Commodore 64 Machine Code Master

David Lawrence & Mark England ISBN 0 946408 05 X £6.95
Programming for Education on the Commodore 64

John Scriven & Patrick Hall ISBN 0 946408 27 0 £5.95

ELECTRON BOOKS

Graphic Art for the Electron Computer

Boris Allan ISBN 0 946408 20 3 £5.95
Programming for Education on the Electron Computer
John Scriven & Patrick Hall ISBN 0 946408 21 1 £5.95

BBC COMPUTER BOOKS

Functional Forth for the BBC Computer

Boris Allan ISBN 0 946408 04 1 £5.95
Graphic Art for the BBC Computer '

Boris Allan ISBN 0 946408 08 4 £5.95
DIY Robotics and Sensors for the BBC Computer

John Billingsley ISBN 0 946408 13 0 £6.95
Essential Maths on the BBC and Electron Computer

Czes Kosniowski ISBN 0 946408 34 3 £5.95
Programming for Education on the BBC Computer

John Scriven & Patrick Hall ISBN 0 946408 10 6 £5.95
Making Music on the BBC Computer

[an Waugh ISBN 0 946408 26 2 £5.95

DRAGON BOOKS

Advanced Sound & Graphics for the Dragon

Keith & Steven Brain ISBN 0 946408 06 8 £5.95
Artificial Intelligence on the Dragon Computer

Keith & Steven Brain ISBN 0 946408 33 § £6.95
Dragon 32 Games Master

Keith & Steven Brain ISBN 0 946408 03 3 £5.95
The Working Dragon

David Lawrence ISBN 0 946408 01 7 £5.95

122

The Dragon Trainer
Brian Lloyd ISBN 0 946408 09 2 £5.95

ATARI BOOKS

Atari Adventures

Tony Bridge ISBN 0 946408 18 1 £5.95
Writing Strategy Games on your Atari Computer
John White ISBN 0 946408 22 X £5.95

GENERAL BOOKS

Home Applications on your Micro
Mike Grace ISBN 0 946408 50 5 £6.95

123

Sunshine also publishes

POPULAR COMPUTING WEEKLY

The first weekly magazine for home computer users. Each copy contains
Top 10 charts of the best-selling software and books and up-to-the-
minute details of the latest games. Other features in the magazine include
regular hardware and software reviews, programming hints, computer
swap, adventure corner and pages of listings for the Spectrum, Dragon,
BBC, VIC 20 and 64, ZX 81 and other popular micros. Only 40p a week,
a year’s subscription costs £19.95 (£9.98 for six months) in the UK and
£37.40 (£18.70 for six months) overseas.

DRAGON USER

The monthly magazine for all users of Dragon microcomputers. Each
issue contains reviews of software and peripherals, programming advice
for beginners and advanced users, program listings, a technical advisory
service and all the latest news related to the Dragon. A year’s
subscription (12 issues) costs £10 in the UK and £16 overseas.

MICRO ADVENTURER

The monthly magazine for everyone interested in Adventure games, war
gaming and simulation/role-playing games. Includes reviews of all the
latest software, lists of all the software available and programming
advice. A year’s subscription (12 issues) costs £10 in the UK and £16
overseas.

COMMODORE HORIZONS

The monthly magazine for all users of Commodore computers. Each
issue contains reviews of software and peripherals, programming advice
for beginners and advanced users, program listings, a technical advisory
service and all the latest news. A year’s subscription costs £10 in the UK
and £16 overseas.

For further information contact:
Sunshine

12—-13 Little Newport Street
London WC2R 3LD

01-437 4343

Telex: 296275

Printed in England by Commercial Colour Press, London E7.

125

NOTES

NOTES

NOTES

Do you want to make your computer think it's a dog? Do you
want to know what the stock market is going to do
tomo[)row? Do you want to fly a jumbo jet in your living
room?

Here is a book written for people who know what they want
from computers but don’t know how to get started. This book
leads you logically through the world of computer
simulations. It builds up your knowledge of the techniques
used by professionals to produce useful programs.

This book will give you the ability to look at any problem and
apply a method of analysis that allows you to develop your
own simulations. With the use of simple examples, John
Cochrane snows you how to make the most of the
considerable potential of the Sinclair QL, and also how to
work within its limitations.

John Cochrane is a consultant engineer. He is a very
experienced programmer and an expert in the field of
computer simulations. His experience stretches back for
over fifteen years and includes work on many major
simulations. He has recently completed programs for
Sinc{)ajr and Timex microcomputers. He ‘relaxes’ by teaching
aerobics.

GB £ NET +00L .95
ISBN 0-94L408-45-9

|| '"“ || Il
9

78094640845
ISBN 0946408 459 £6.95 net

JOHN COCHRANE SIMULATION TECHNIQUES ON THE QL SUNSHINE

